Skip to main content
Log in

Design and Evaluation of Hydrophilic Matrix System for pH-Independent Sustained Release of Weakly Acidic Poorly Soluble Drug

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The aim of this research was to design and evaluate a hydrophilic matrix system for sustained release of glipizide, a weakly acidic poor soluble drug. A combination of inclusion complexation and microenvironmental pH modification techniques was utilized to improve the dissolution and pH-independent release of glipizide. Hydroxypropyl-β-cyclodextrin (HP-β-CD) was used as the complexation agent while sodium citrate and magnesium oxide (MgO) were used as model pH modifiers. The hydrophilic matrix tablets were prepared by powder direct compression and evaluated by in vitro dissolution study respectively in pH 6.8 and pH 1.2 dissolution media. The formulations containing MgO exhibited increased cumulative drug release from less than 40% in the reference formulation to 90% within 24 h in acidic media (pH 1.2). The release profile in acidic media was similar to the alkaline media (pH 6.8) with a similarity factor (f2) of 55.0, suggesting the weakening of the effect of pH on the dissolution efficiency of glipizide. The release profile fitted well into the Higuchi model and the dominant mechanism of drug release was Fickian diffusion while case II transport/polymer relaxation occurred. In conclusion, combining inclusion complexation agents and pH modifiers had improved the dissolution of glipizide as well as achieved the pH-independent release profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Taniguchi C, Kawabata Y, Wada K, et al. Microenvironmental pH-modification to improve dissolution behavior and oral absorption for drugs with pH-dependent solubility. Expert Opin Drug Deliv. 2014;11:505–16.

    Article  PubMed  CAS  Google Scholar 

  2. Pang J, Dalziel G, Dean B, et al. Pharmacokinetics and absorption of the anticancer agents dasatinib and GDC-0941 under various gastric conditions in dogs—reversing the effect of elevated gastric pH with betaine HCl. Mol Pharm. 2013;10:4024–31.

    Article  PubMed  CAS  Google Scholar 

  3. McConnell EL, Fadda HM, Basit AW. Gut instincts: explorations in intestinal physiology and drug delivery. Int J Pharm. 2008;364:213–26.

    Article  PubMed  CAS  Google Scholar 

  4. Mitra A, Kesisoglou F. Impaired drug absorption due to high stomach pH: a review of strategies for mitigation of such effect to enable pharmaceutical product development. Mol Pharm. 2013;10:3970–9.

    Article  PubMed  CAS  Google Scholar 

  5. Varum FJ, Hatton GB, Basit AW. Food, physiology and drug delivery. Int J Pharm. 2013;457:446–60.

    Article  PubMed  CAS  Google Scholar 

  6. Merchant HA, Goyanes A, Parashar N, et al. Predicting the gastrointestinal behaviour of modified-release products: utility of a novel dynamic dissolution test apparatus involving the use of bicarbonate buffers. Int J Pharm. 2014;475:585–91.

    Article  PubMed  CAS  Google Scholar 

  7. McAllister M. Dynamic dissolution: a step closer to predictive dissolution testing? Mol Pharm. 2010;7:1374–87.

    Article  PubMed  CAS  Google Scholar 

  8. Bassi P, Kaur G. pH modulation: a mechanism to obtain pH-independent drug release. Expert Opin Drug Deliv. 2010;7:845–57.

    Article  PubMed  CAS  Google Scholar 

  9. Taniguchi C, Inoue R, Kawabata Y, et al. Novel formulations of dipyridamole with microenvironmental pH-modifiers for improved dissolution and bioavailability under hypochlorhydria. Int J Pharm. 2012;434:148–54.

    Article  PubMed  CAS  Google Scholar 

  10. Rao VM, Engh K, Qiu Y. Design of pH-independent controlled release matrix tablets for acidic drugs. Int J Pharm. 2003;252:81–6.

    Article  PubMed  CAS  Google Scholar 

  11. Riis T, Bauer-Brandl A, Wagner T, et al. pH-independent drug release of an extremely poorly soluble weakly acidic drug from multiparticulate extended release formulations. Eur J Pharm Biopharm. 2007;65:78–84.

    Article  PubMed  CAS  Google Scholar 

  12. Tran PH, Tran HT, Lee BJ. Modulation of microenvironmental pH and crystallinity of ionizable telmisartan using alkalizers in solid dispersions for controlled release. J Control Release. 2008;129:59–65.

    Article  PubMed  CAS  Google Scholar 

  13. Adachi M, Hinatsu Y, Kusamori K, et al. Improved dissolution and absorption of ketoconazole in the presence of organic acids as pH-modifiers. Eur J Pharm Sci. 2015;76:225–30.

    Article  PubMed  CAS  Google Scholar 

  14. Onoue S, Inoue R, Taniguchi C, et al. Improved dissolution and pharmacokinetic behavior of dipyridamole formulation with microenvironmental pH-modifier under hypochlorhydria. Int J Pharm. 2012;426:61–6.

    Article  PubMed  CAS  Google Scholar 

  15. Hamza Yel S, Aburahma MH. Design and in vitro evaluation of novel sustained-release matrix tablets for lornoxicam based on the combination of hydrophilic matrix formers and basic pH-modifiers. Pharm Dev Technol. 2010;15:139–53.

    Article  CAS  Google Scholar 

  16. Zur M, Cohen N, Agbaria R, et al. The biopharmaceutics of successful controlled release drug product: segmental-dependent permeability of glipizide vs. metoprolol throughout the intestinal tract. Int J Pharm. 2015;489:304–10.

    Article  PubMed  CAS  Google Scholar 

  17. Kivistö KT, Neuvonen PJ. Enhancement of absorption and effect of glipizide by magnesium hydroxide. Clin Pharmacol Ther. 1991;49:39–43.

    Article  PubMed  Google Scholar 

  18. Nguyen C, Christensen JM, Ayres JW. Compression of coated drug beads for sustained release tablet of glipizide: formulation, and dissolution. Pharm Dev Technol. 2014;19:10–20.

    Article  PubMed  CAS  Google Scholar 

  19. Verma RK, Garg S. Development and evaluation of osmotically controlled oral drug delivery system of glipizide. Eur J Pharm Biopharm. 2004;57:513–25.

    Article  PubMed  CAS  Google Scholar 

  20. Huang H, Wu Z, Qi X, et al. Compression-coated tablets of glipizide using hydroxypropylcellulose for zero-order release: in vitro and in vivo evaluation. Int J Pharm. 2013;446:211–8.

    Article  PubMed  CAS  Google Scholar 

  21. Maderuelo C, Zarzuelo A, Lanao JM. Critical factors in the release of drugs from sustained release hydrophilic matrices. J Control Release. 2011;154:2–19.

    Article  PubMed  CAS  Google Scholar 

  22. Cuzzucoli Crucitti V, Maria Migneco L, et al. Intermolecular interaction and solid state characterization of abietic acid/chitosan solid dispersions possessing antimicrobial and antioxidant properties. Eur J Pharm Biopharm. 2018;125:114–23.

    Article  PubMed  CAS  Google Scholar 

  23. Baird JA, Taylor LS. Evaluation of amorphous solid dispersion properties using thermal analysis techniques. Adv Drug Deliv Rev. 2012;64:396–421.

    Article  PubMed  CAS  Google Scholar 

  24. Wang D, Chen G, Ren L. Preparation and characterization of the sulfobutylether-beta-cyclodextrin inclusion complex of amiodarone hydrochloride with enhanced oral bioavailability in fasted state. AAPS PharmSciTech. 2017;18:1526–35.

    Article  PubMed  CAS  Google Scholar 

  25. Patel R, Purohit N. Physico-chemical characterization and in vitro dissolution assessment of clonazepam-cyclodextrins inclusion compounds. AAPS PharmSciTech. 2009;10:1301–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Verma RK, Garg S. Selection of excipients for extended release formulations of glipizide through drug–excipient compatibility testing. J Pharm Biomed Anal. 2005;38:633–44.

    Article  PubMed  CAS  Google Scholar 

  27. Ezawa T, Inoue Y, Murata I, et al. Characterization of the dissolution behavior of piperine/cyclodextrins inclusion complex. APPS PharmSciTech. 2018;19:923–33.

    Article  CAS  Google Scholar 

  28. Kawabata Y, Wada K, Nakatani M, et al. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications. Int J Pharm. 2011;420:1–10.

    Article  PubMed  CAS  Google Scholar 

  29. Nair AB, Attimarad M, Al-Dhubiab BE, et al. Enhanced oral bioavailability of acyclovir by inclusion complex using hydroxypropyl-beta-cyclodextrin. Drug Deliv. 2014;21:540–7.

    Article  PubMed  CAS  Google Scholar 

  30. Tang P, Li S, Wang L, et al. Inclusion complexes of chlorzoxazone with β- and hydroxypropyl-β-cyclodextrin: characterization, dissolution, and cytotoxicity. Carbohydr Polym. 2015;131:297–305.

    Article  PubMed  CAS  Google Scholar 

  31. Taneri F, Ozcan I, Guneri T. In vitro and in vivo evaluation of oral tablet formulations prepared with ketoconazole and hydroxypropyl-β-cyclodextrin. Drug Deliv. 2010;17:152–7.

    Article  PubMed  CAS  Google Scholar 

  32. Pygall SR, Kujawinski S, Timmins P, et al. The suitability of tris(hydroxylmethyl) aminomethane (THAM) as a buffering system for hydroxypropyl methylcellulose (HPMC) hydrophilic matrices containing a weak acid drug. Int J Pharm. 2010;387:93–102.

    Article  PubMed  CAS  Google Scholar 

  33. Menning MM, Dalziel SM. Fumaric acid microenvironment tablet formulation and process development for crystalline cenicriviroc mesylate, a BCS IV compound. Mol Pharm. 2013;10:4005–15.

    Article  PubMed  CAS  Google Scholar 

  34. Tran PH, Tran TT, Park JB, et al. Investigation of physicochemical factors affecting the stability of a pH-modulated solid dispersion and a tablet during storage. Int J Pharm. 2011;414:48–55.

    Article  PubMed  CAS  Google Scholar 

  35. Vyslouzil J, Pavlokova S, Vetchy D. Influence of pH modulation on dynamic behavior of gel layer and release of weakly basic drug from HPMC/wax matrices, controlled by acidic modifiers evaluated by multivariate data analysis. AAPS PharmSciTech. 2017;18:1242–53.

    Article  PubMed  CAS  Google Scholar 

  36. Varma MV, Kaushal AM, Garg S. Influence of micro-environmental pH on the gel layer behavior and release of a basic drug from various hydrophilic matrices. J Control Release. 2005;103:499–510.

    Article  PubMed  CAS  Google Scholar 

  37. Siepmann J, Peppas NA. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev. 2001;48:139–57.

    Article  PubMed  CAS  Google Scholar 

  38. Siepmann J, Peppas NA. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev. 2012;64:163–74.

    Article  Google Scholar 

  39. Peppas NA, Sahlin JJ. A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. Int J Pharm. 1989;57:169–72.

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by Funds of Shenzhen Science and Technology Innovation Commission (Program No. JCYJ20160428091243299).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Huaqing.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Lin, H., Peng, B. et al. Design and Evaluation of Hydrophilic Matrix System for pH-Independent Sustained Release of Weakly Acidic Poorly Soluble Drug. AAPS PharmSciTech 19, 2144–2154 (2018). https://doi.org/10.1208/s12249-018-1008-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-018-1008-1

KEY WORDS

Navigation