First Development, Optimization, and Stability Control of a Pediatric Oral Atenolol Formulation

Research Article
  • 20 Downloads

Abstract

Liquid formulations can be used in children of different ages by varying the volume of the administered dose in order to ensure an exact dosage. The aim of this work was to develop and to optimize a safe liquid atenolol formulation and to carry out the corresponding chemical and microbiological stability studies. A Plackett-Burman design was used to determine the factors that could be critical in the development of the formulations, and a central composite design was used to determine the optimal working conditions. As a result of these analyses, three formulations were selected and their stability studied in three storage conditions, 4, 25, and 40°C. After 6 months of stability testing, the optimal systems showed no pH change or atenolol loss; however, only glycerin-based formulations showed no microbial development. These systems, employing excipients in a range that the EMA has recommended, showed chemical and microbiological stability for at least 6 months even at the worst storage conditions.

KEY WORDS

atenolol pediatrics development stability experimental design 

Notes

Acknowledgements

We would like to thank the staff from the English Department (Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR) for the language correction of the manuscript and Cecilia Cassabone for the microbiological assays.

References

  1. 1.
    Vrignaud S, Briot T, Launay A, Kempf M, Lagarce F. Design and stability study of a paediatric oral solution of methotrexate 2 mg/ml. Int J Pharm. 2015;487(1):270–3.CrossRefPubMedGoogle Scholar
  2. 2.
    Olski TM, Lampus SF, Gherarducci G, Saint Raymond A. Three years of paediatric regulation in the European Union. Eur J Clin Pharmacol. 2011;67(3):245–52.CrossRefPubMedGoogle Scholar
  3. 3.
    Tuleu C. Better medicines for children: are we there yet? J Pharm Pharmacol. 2017;69(4):349.CrossRefPubMedGoogle Scholar
  4. 4.
    Rocchi F, Tomasi P. The development of medicines for children: part of a series on Pediatric Pharmacology, guest edited by Gianvincenzo Zuccotti, Emilio Clementi, and Massimo Molteni. Pharmacol Res. 2011;64(3):169–75.CrossRefPubMedGoogle Scholar
  5. 5.
    EMA/PDCO/246339/2013. Inventory of paediatric therapeutic needs. Cardiovascular therapeutic area. Hum Med Dev Eval. 2013;1–6. http://www.ema.europa.eu/docs/en_GB/document_library/Other/2013/04/WC500142474.pdf.
  6. 6.
    Poirier L, Lacourcière Y. The evolving role of β-adrenergic receptor blockers in managing hypertension. Can J Cardiol. 2012;28(3):334–40.CrossRefPubMedGoogle Scholar
  7. 7.
    Rousseau MF, Pouleur H, Cocco G, Wolff AA. Comparative efficacy of ranolazine versus atenolol for chronic angina pectoris. Am J Cardiol. 2005;95(3):311–6.CrossRefPubMedGoogle Scholar
  8. 8.
    Havaldar V, Kulkarni A, Dias R, Aloorkar N, Mali K. Floating matrix tablets of atenolol: formulation and in vitro evaluation. Asian J Pharm (AJP). 2014;3(4):286–91.CrossRefGoogle Scholar
  9. 9.
    Singh B, Chakkal SK, Ahuja N. Formulation and optimization of controlled release mucoadhesive tablets of atenolol using response surface methodology. AAPS PharmSciTech. 2006;7(1):E19–28.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Srivastava A, Wadhwa S, Ridhurkar D, Mishra B. Oral sustained delivery of atenolol from floating matrix tablets—formulation and in vitro evaluation. Drug Dev Ind Pharm. 2005;31(4–5):367–74.PubMedGoogle Scholar
  11. 11.
    Kadam PB, Dias RJ, Mali KK, Havaldar VD, Mahajan NS. Formulation and evaluation of buccoadhesive tablets of atenolol. J Pharm Res. 2008;1(2):34–8.Google Scholar
  12. 12.
    Adhikari SNR, Nayak BS, Nayak AK, Mohanty B. Formulation and evaluation of buccal patches for delivery of atenolol. AAPS PharmSciTech. 2010;11(3):1038–44.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Jug M, Bećirević-Laćan M, Bengez S. Novel cyclodextrin-based film formulation intended for buccal delivery of atenolol. Drug Dev Ind Pharm. 2009;35(7):796–807.CrossRefPubMedGoogle Scholar
  14. 14.
    Moneghini M, Carcano A, Perissutti B, Rubessa F. Formulation design studies of atenolol tablets. Pharm Dev Technol. 2000;5(2):297–301.CrossRefPubMedGoogle Scholar
  15. 15.
    Shirwaikar A, Ramesh A. Fast disintegrating tablets of atenolol by dry granulation method. Indian J Pharm Sci. 2004;66(4):422.Google Scholar
  16. 16.
    Garrido VR, Carbajosa GR, Fernández-Polo A, Bautista SC. Microbiological quality of pediatric oral liquid formulations. Comunicación Breve. 2016;40(5):427–35.Google Scholar
  17. 17.
    Zaid AN, Malkieh N, Kharoaf M, Abu GA, Al-Ramahi R. Formulation and stability evaluation of extemporaneously prepared atenolol capsules from crushed atenolol tablets. Int J Pharm Compd. 2011;16(4):342–6.Google Scholar
  18. 18.
    Foppa T, Murakami F, Silva M. Development validation and stability study of pediatric atenolol syrup. Pharmazie. 2007;62(7):519–21.PubMedGoogle Scholar
  19. 19.
    Standing JF, Tuleu C. Paediatric formulations—getting to the heart of the problem. Int J Pharm. 2005;300(1–2):56–66.CrossRefPubMedGoogle Scholar
  20. 20.
    Brown D, Ford J, Nunn A, Rowe P. An assessment of dose-uniformity of samples delivered from paediatric oral droppers. J Clin Pharm Ther. 2004;29(6):521–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Fabiano V, Mameli C, Zuccotti GV. Paediatric pharmacology: remember the excipients. Pharmacol Res. 2011;63(5):362–5.CrossRefPubMedGoogle Scholar
  22. 22.
    Walsh J, Cram A, Woertz K, Breitkreutz J, Winzenburg G, Turner R, et al. Playing hide and seek with poorly tasting paediatric medicines: do not forget the excipients. Adv Drug Deliv Rev. 2014;73:14–33.CrossRefPubMedGoogle Scholar
  23. 23.
    Santoveña A, Hernández-Paiz Z, Fariña J. Design of a pediatric oral formulation with a low proportion of hydrochlorothiazide. Int J Pharm. 2012;423(2):360–4.CrossRefPubMedGoogle Scholar
  24. 24.
    Leonardi D, Lamas MC, Olivieri AC. Multiresponse optimization of the properties of albendazole–chitosan microparticles. J Pharm Biomed Anal. 2008;48(3):802–7.CrossRefPubMedGoogle Scholar
  25. 25.
    EMA/CHMP/SWP/272921/2012. Reflection paper on the use of methyl- and propylparaben as excipients in human medicinal products for oral use Committee for Medicinal Products for Human Use (CHMP). 2015;1–13. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2015/11/WC500196733.pdf.
  26. 26.
    Pharmacopoeia B. British pharmacopoeia. 2016.Google Scholar
  27. 27.
    Denyer S, Hodges N, Gorman S. Introduction to Pharmaceutical Microbiology, in Hugo and Russell's: Pharmaceutical Microbiology. 7th edn. (eds S. P. Denyer, N. A. Hodges and S. P. Gorman), Oxford: Blackwell Science Ltd; 2004.  https://doi.org/10.1002/9780470988329.ch1.
  28. 28.
    Bonthu MG, Neelima MS, Raju VB, Sumanth KS, Mounika P, Srinivas K, et al. Development and validation of stability indicating reverse phase high-perfomance liquid chromatography method for simultaneous estimation of atenolol, hydrochlorothiazide and losartan in bulk and pharmaceutical dosage form. Dev. 2016;9(2):118–24.Google Scholar
  29. 29.
    Calvo NL, Maggio RM, Kaufman TS. Characterization of pharmaceutically relevant materials at the solid state employing chemometrics methods. J Pharm Biomed Anal. 2018;147:538–64.CrossRefPubMedGoogle Scholar
  30. 30.
    Chow SC. Statistical design and analysis of stability studies. Boca Raton: CRC Press; 2007.CrossRefGoogle Scholar
  31. 31.
    Provenza N, Calpena A, Mallandrich M, Halbaut L, Clares B. Design and physicochemical stability studies of paediatric oral formulations of sildenafil. Int J Pharm. 2014;460(1):234–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Banerjee S. Hypertension in children. Clin Queries: Nephrol. 2013;2(2):78–83.CrossRefGoogle Scholar
  33. 33.
    Thalgahagoda S, Shenoy M. Physiology and treatment of hypertension. Paediatr Child Health. 2013;23(2):53–8.CrossRefGoogle Scholar
  34. 34.
    Hatem A, Marton S, Csóka G, Rácz I. Preformulation studies of atenolol in oral liquid dosage form. I. Effect of pH and temperature. Acta Pharm Hung. 1996;66(4):177–80.PubMedGoogle Scholar
  35. 35.
    Plummer DT. Introducció a la bioquímica pràctica. ES: Edicions Universitat Barcelona; 1994.Google Scholar
  36. 36.
    Mousavi SJ, Parvini M, Ghorbani M. Experimental design data for the zinc ions adsorption based on mesoporous modified chitosan using central composite design method. Carbohydr Polym. 2018;188:197–212.CrossRefPubMedGoogle Scholar
  37. 37.
    Naveršnik K. Humidity-corrected Arrhenius equation: the reference condition approach. Int J Pharm. 2016;500(1–2):360–5.CrossRefPubMedGoogle Scholar
  38. 38.
    Teng F, Yang H, Li G, Lin X, Zhang Y, Tang X. Parenteral formulation of larotaxel lipid microsphere tackling poor solubility and chemical instability. Int J Pharm. 2014;460(1):212–9.CrossRefPubMedGoogle Scholar
  39. 39.
    USP C. 61. Microbiological examination of nonsterile products: microbial enumeration tests. U S Pharmacopeia. 2015;32:71–5.Google Scholar
  40. 40.
    Rowe RC, Sheskey PJ, Owen SC. Handbook of pharmaceutical excipients. London: Pharmaceutical Press; 2006.Google Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  1. 1.Planta piloto de Producción de Medicamentos, Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de RosarioRosarioArgentina
  2. 2.Área Análisis de Medicamentos, Departamento Química Orgánica, Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de RosarioRosarioArgentina
  3. 3.IQUIR-CONICETRosarioArgentina
  4. 4.Área Técnica Farmacéutica, Departamento Farmacia, Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de RosarioRosarioArgentina
  5. 5.Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de RosarioRosarioArgentina

Personalised recommendations