Development of Novel Octanoyl Chitosan Nanoparticles for Improved Rifampicin Pulmonary Delivery: Optimization by Factorial Design

  • Kailash C. Petkar
  • Sandip Chavhan
  • N. Kunda
  • I. Saleem
  • S. Somavarapu
  • Kevin M. G. Taylor
  • Krutika K. Sawant
Research Article
  • 40 Downloads

Abstract

A novel hydrophobic chitosan derivative, octanoyl chitosan (OC) with improved organic solubility was synthesized, characterized, and employed for the preparation of rifampicin (Rif) encapsulated nanoparticle formulations for pulmonary delivery. OC was characterized to confirm acyl group substitution and cytotoxicity in A549 epithelial lung cells. OC nanoparticles were produced by the double emulsion solvent evaporation technique without cross-linking and characterized for particle size distribution, morphology, crystallinity, thermal stability, aerosol delivery, and drug release rate. OC was successfully synthesized with substitution degree of 44.05 ± 1.75%, and solubility in a range of organic solvents. Preliminary cytotoxicity studies of OC showed no effect on cell viability over a period of 24 h on A549 cell lines. OC nanoparticles were optimized using a 32 full factorial design. An optimized batch of OC nanoparticles, smooth and spherical in morphology, had mean hydrodynamic diameter of 253 ± 19.06 nm (PDI 0.323 ± 0.059) and entrapment efficiency of 64.86 ± 7.73% for rifampicin. Pulmonary deposition studies in a two-stage impinger following aerosolization of nanoparticles from a jet nebulizer gave a fine particle fraction of 43.27 ± 4.24%. In vitro release studies indicated sustained release (73.14 ± 3.17%) of rifampicin from OC nanoparticles over 72 h, with particles demonstrating physical stability over 2 months. In summary, the results confirmed the suitability of the developed systems for pulmonary delivery of drugs with excellent aerosolization properties and sustained-release characteristics.

KEY WORDS

octanoyl chitosan hydrophobic chitosan rifampicin factorial design tuberculosis 

Notes

Acknowledgements

The authors would like to thank Mr. David McCarthy (UCL) for SEM images.

Compliance with Ethical Standards

Conflict of Interest

The authors declare there is no conflict of interest.

Supplementary material

12249_2018_972_MOESM1_ESM.doc (134 kb)
ESM 1 (DOC 133 kb)

References

  1. 1.
    World Health Organization. Global TB control—epidemiology, strategy, financing. Programs and Projects: WHO Global Tuberculosis Report - 2017. 2016. (http://www.who.int/tb/publications/global_report/gtbr2015_executive_summary.pdf?ua=1) (Date accessed Dec. 2017).
  2. 2.
    Ishikawaa AA, Salazarb JV, Salinasc M, Gaitania CM, Nurkiewiczd T, Negretec GR, et al. Self-assembled nanospheres for encapsulation and aerosolization of rifampicin. RSC Adv. 2016;6(16):12959–63.CrossRefGoogle Scholar
  3. 3.
    Singh C, Koduri LV, Dhawale V, Bhatt TD, Kumar R, Grover V, et al. Potential of aerosolized rifampicin lipospheres for modulation of pulmonary pharmacokinetics and bio-distribution. Int J Pharm. 2015;495:627–32.CrossRefPubMedGoogle Scholar
  4. 4.
    Rawal T, Parmar R, Tyagi R, Butani S. Rifampicin loaded chitosan nanoparticle dry powder presents an improved therapeutic approach for alveolar tuberculosis. Colloids Surf B Biointerfaces. 2017;154:321–30.CrossRefPubMedGoogle Scholar
  5. 5.
    González-Juarrero M, O'Sullivan MP. Optimization of inhaled therapies for tuberculosis: the role of macrophages and dendritic cells. Tuberculosis. 2011;91(1):86–92.CrossRefPubMedGoogle Scholar
  6. 6.
    Mansour HM, Rhee YS, Wu X. Nanomedicine in pulmonary delivery. Int J Nanomedicine. 2009;4:299–319.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Menon JY, Ravikumar P, Pise A, Gyawali D, Hsia CCW, Nguyen KT. Polymeric nanoparticles for pulmonary protein and DNA delivery. Acta Biomater. 2014;10:2643–52.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Efiana NA, Mahmood A, Lam HT, Zupančič O, Leonaviciute G, Bernkop-Schnürch A. Improved mucoadhesive properties of self-nanoemulsifying drug delivery systems (SNEDDS) by introducing acyl chitosan. Int J Pharm. 2017;519(1–2):206–12.CrossRefPubMedGoogle Scholar
  9. 9.
    Moschos SA, Bramwell VW, Somavarapu S, Alpar HO. Comparative immunomodulatory properties of a chitosan-MDP adjuvant combination following intranasal or intramuscular immunisation. Vaccine. 2005;23(16):1923–30.CrossRefPubMedGoogle Scholar
  10. 10.
    Grenha A, Seijo B, Remuñán-López C. Microencapsulated chitosan nanoparticles for lung protein delivery. Eur J Pharm Sci. 2005;25(4–5):427–37.CrossRefPubMedGoogle Scholar
  11. 11.
    Li HY Seville PC. Novel pMDI formulations for pulmonary delivery of proteins. Int J Pharm. 2010;385:73–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Amidi M, Romeijn SG, Verhoef JC, Junginger HE, Bungener L, Huckriede A, et al. N-trimethyl chitosan (TMC) nanoparticles loaded with influenza subunit antigen for intranasal vaccination: biological properties and immunogenicity in a mouse model. Vaccine. 2007;25(1):144–53.CrossRefPubMedGoogle Scholar
  13. 13.
    Motiei M, Kashanian S. Novel amphiphilic chitosan nanocarriers for sustained oral delivery of hydrophobic drugs. Eur J Pharm Sci. 2017;99:285–91.CrossRefPubMedGoogle Scholar
  14. 14.
    Huang Y, Yu H, Guo L, Huang Q. Structure and self-assembly properties of a new chitosan-based amphiphile. J Phys Chem B. 2010;114(23):7719–26.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Mourya VK, Inamdar NN. Chitosan modifications and application: opportunities galore. React Funct Polym. 2008;68:1013–51.CrossRefGoogle Scholar
  16. 16.
    Zhang J, Chen XG, Li YY, Liu CS. Self-assembled nanoparticles based on hydrophobically modified chitosan as carriers for doxorubicin. Nanomedicine. 2007;3(4):258–65.CrossRefPubMedGoogle Scholar
  17. 17.
    Cho Y, Kim TJ, Park HJ. Size-controlled self-aggregated N-acyl chitosan nanoparticles as a vitamin C carrier. Carbohydr Polym. 2012;88(3):1087–92.CrossRefGoogle Scholar
  18. 18.
    Cho Y, Kim TJ, Park HJ. Preparation, characterization, and protein loading properties of N-acyl chitosan nanoparticles. J Appl Polym Sci. 2012;124:1366–71.CrossRefGoogle Scholar
  19. 19.
    Pandey R, Sharma A, Zahoor A, Sharma S, Khuller GK, Prasad B. Poly (DL-lactide-co-glycolide) nanoparticle-based inhalable sustained drug delivery system for experimental tuberculosis. J Antimicrob Chemoth. 2003;52:981–6.CrossRefGoogle Scholar
  20. 20.
    Holzer M, Vogel V, Mäntele W, Schwartz D, Haase W, Langer K. Physico-chemical characterisation of PLGA nanoparticles after freeze-drying and storage. Eur J Pharm Biopharm. 2009;72:428–37.CrossRefPubMedGoogle Scholar
  21. 21.
    Bolton S, Charles S. Pharmaceutical statistics. New York: Marcel Dekker Inc; 2004. p. 249–55.Google Scholar
  22. 22.
    Benetton SA, Kedor-Hackmann ERM, Santoro MIRM, Borges VM. Visible spectrophotometric and first-derivative UV spectrophotometric determination of rifampicin and isoniazid in pharmaceutical preparations. Talanta. 1998;47(3):639–43.CrossRefPubMedGoogle Scholar
  23. 23.
    European Directorate for the Quality of Medicines, European Pharmacopoeia 9.0 (Ph. Eur. 9th Edn.), Method Chapter 2.9.18, Preparations for inhalation: aerodynamic assessment of fine particles. 2017. Pg. No. 323 (Strasbourg, Council of Europe).Google Scholar
  24. 24.
    Liu J, Gonga T, Fu H, Wang C, Wang X, Chena Q, et al. Solid lipid nanoparticles for pulmonary delivery of insulin. Int J Pharm. 2008;356:333–44.CrossRefPubMedGoogle Scholar
  25. 25.
    Marques MRC, Loebenberg R, Almukainzi M. Simulated biological fluids with possible application in dissolution testing. Dissolut Technol. 2011;18:15–28.CrossRefGoogle Scholar
  26. 26.
    Tatarczak M, Flieger J, Szumilo H. High-performance liquid-chromatographic determination of rifampicin in complex pharmaceutical preparation and in serum mycobacterium tuberculosis-infected patients. Acta Pol Pharm Drug Res. 2005;62(4):251–6.Google Scholar
  27. 27.
    Kroll A, Dierker C, Rommel C, Hahn D, Wohlleben W, Schulze-Isfort S, et al. Cytotoxicity screening of 23 engineered nanomaterial using a test matrix of ten cell lines and three different assays. Part Fibre Toxicol. 2011;8:9.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Grenha A. Chitosan nanoparticles: a survey of preparation methods. J Drug Target. 2012;20(4):291–300.CrossRefPubMedGoogle Scholar
  29. 29.
    Aranaz I, Harris R, Heras A. Chitosan amphiphilic derivatives. Chemistry and applications. Curr Org Chem. 2010;14:308–30.CrossRefGoogle Scholar
  30. 30.
    Li Y, Zhang S, Meng X, Chen X, Ren G. The preparation and characterization of a novel amphiphilic oleoyl-carboxymethyl chitosan self-assembled nanoparticles. Carbohydr Polym. 2011;83:130–6.CrossRefGoogle Scholar
  31. 31.
    Hu L, Suna Y, Wu Y. Advances in chitosan-based drug delivery vehicles. Nano. 2013;5:3103.Google Scholar
  32. 32.
    Shah PP, Mashru RC, Rane YM, Thakkar A. Design and optimization of mefloquine hydrochloride microparticles for bitter taste masking. AAPS PharmSciTech. 2008;9(2):377–89.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Doan TVP, Couet W, Olivier JC. Formulation and in vitro characterization of inhalable rifampicin-loaded PLGA microspheres for sustained lung delivery. Int J Pharm. 2011;414:112–7.CrossRefPubMedGoogle Scholar
  34. 34.
    Bhavsar MD, Tiwari SB, Amiji MM. Formulation optimization for the nanoparticles-in-microsphere hybrid oral delivery system using factorial design. J Control Release. 2006;110(2):422–30.CrossRefPubMedGoogle Scholar
  35. 35.
    Murakami H, Kobayashi M, Takeuchi H, Kawashima Y. Preparation of poly(DL-lactide-co-glycolide) nanoparticles by modified spontaneous emulsification solvent diffusion method. Int J Pharm. 1999;187:143–52.CrossRefPubMedGoogle Scholar
  36. 36.
    Kirby DJ, Rosenkrands I, Agger EM, Andersen P, Coombes AG, Perrie Y. PLGA microspheres for the delivery of a novel subunit TB vaccine. J Drug Target. 2008;16(4):282–93.CrossRefPubMedGoogle Scholar
  37. 37.
    Bilati U, Allémann, Doelker E. Poly(D,L-lactide-co-glycolide) protein-loaded nanoparticles prepared by the double emulsion method—processing and formulation issues for enhanced entrapment efficiency. J Microencapsul. 2009;22(2):205–14.CrossRefGoogle Scholar
  38. 38.
    Alex R, Bodmeier R. Encapsulation of water-soluble drugs by a modified solvent evaporation method. I. Effect of process and formulation variables on drug entrapment. J Microencapsul. 1990;7:347–55.CrossRefPubMedGoogle Scholar
  39. 39.
    Conway BR, Alpar HO. Double emulsion microencapsulation of proteins as model antigens using polylactide polymers: effect of emulsifier on the microsphere characteristics and release kinetics. Eur J Pharm Biopharm. 1996;42:42–8.Google Scholar
  40. 40.
    Yang YY, Chung TS, Ng N. Morphology, drug distribution, and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. Biomaterials. 2011;22:231–41.CrossRefGoogle Scholar
  41. 41.
    Atkins TW, Peacock J. The incorporation and release of bovine serum albumin from poly-hydroxybutyratehydroxyvalerate microcapsules. J Microencapsul. 1996;13:709–17.CrossRefPubMedGoogle Scholar
  42. 42.
    Jeffery H, Davis SS, O’Hagan DT. The preparation and characterization of poly(lactide-co-glycolide) microparticles. II. The entrapment of a model protein using a (water-in-oil)-in-water emulsion solvent evaporation technique. Pharm Res. 1993;10:362–8.CrossRefPubMedGoogle Scholar
  43. 43.
    Ranjan AP, Mukerjee A, Helson L, Vishwanatha JK. Scale up, optimization and stability analysis of Curcumin C3 complex-loaded nanoparticles for cancer therapy. J Nanobiotechnol. 2012;10:38.CrossRefGoogle Scholar
  44. 44.
    Lubben IMV, Verhoef JC, Borchard G, Junginger HE. Chitosan and its derivatives in mucosal drug and vaccine delivery. Eur J Pharm Sci. 2001;14:201–7.CrossRefPubMedGoogle Scholar
  45. 45.
    Harleman DRF, Murcott SE. Method of drinking water treatment with natural cationic polymers, US 5543056 A. 1996, Aug 6.Google Scholar
  46. 46.
    Manca ML, Mourtas S, Dracopoulos V, Fadda AM, Antimisiaris SG. PLGA, chitosan or chitosan-coated PLGA microparticles for alveolar delivery? A comparative study of particle stability during nebulization. Colloids Surf B: Biointerfaces. 2008;62:220–31.CrossRefPubMedGoogle Scholar
  47. 47.
    NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, date (accessed June 2013), (http://www.itl.nist.gov/div898/handbook/pri/section5/pri5322.htm).
  48. 48.
    Ma G, Yang D, Zhou Y, Xiao M, Kennedy JF, Nie J. Preparation and characterization of water-soluble N-alkylated chitosan. Carbohydr Polym. 2008;74:121–6.CrossRefGoogle Scholar
  49. 49.
    Zong Z, Kimura Y, Takahashi M, Yamane H. Characterization of chemical and solid state structures of acylated chitosans. Polymer. 2000;41:899–906.CrossRefGoogle Scholar
  50. 50.
    Parlati C, Colombo P, Buttini F, Young PM, Adi H, Ammit AJ, et al. Pulmonary spray dried powders of tobramycin containing sodium stearate to improve aerosolization efficiency. Pharm Res. 2009;26(5):1084–92.CrossRefPubMedGoogle Scholar
  51. 51.
    Kendrick AH, Smith EC, Denyer J. EditorialNebulizers—fill volume, residual volume and matching of nebulizer to compressor. Respir Med. 1995;89:157–l59.CrossRefPubMedGoogle Scholar
  52. 52.
    Elhissi A. Liposomes for pulmonary drug delivery: the role of formulation and inhalation device design. Curr Pharm Des. 2017;23(3):362–72.PubMedGoogle Scholar
  53. 53.
    Klariæ D, Hafner A, Zubèiæ S, Dürrigl M, Filipoviæ-Grèiæ J. Spray-dried microspheres based on chitosan and and lecithin cyclosporin a delivery system. Chem Biochem Eng Q. 2012;26(4):355–64.Google Scholar
  54. 54.
    Costa P, Lobo J. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13:123–33.CrossRefPubMedGoogle Scholar
  55. 55.
    Lv H, Zhang S, Wang B, Cui S, Yan J. Toxicity of cationic lipids and cationic polymers in gene delivery. J Cont Rel. 2006;114:100–9.CrossRefGoogle Scholar
  56. 56.
    Hoskins C, Cuschieri A, Wang L. The cytotoxicity of polycationic iron oxide nanoparticles: common endpoint assays and alternative approaches for improved understanding of cellular response mechanism. J Nanobiotechnology. 2012;10:15.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Seydoux E, Rodriguez-Lorenzo L, RAM B, et al. Pulmonary delivery of cationic gold nanoparticles boost antigen-specific CD4 + T cell proliferation. Nanomedicine. 2016;12:1815–26.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  • Kailash C. Petkar
    • 1
    • 2
  • Sandip Chavhan
    • 1
  • N. Kunda
    • 3
  • I. Saleem
    • 3
  • S. Somavarapu
    • 2
  • Kevin M. G. Taylor
    • 2
  • Krutika K. Sawant
    • 1
  1. 1.Faculty of Pharmacy, Department PharmaceuticsThe Maharaja Sayajirao University of BarodaVadodaraIndia
  2. 2.Department of PharmaceuticsUCL School of PharmacyLondonUK
  3. 3.School of PharmacyLiverpool John Moores UniversityLiverpoolUK

Personalised recommendations