Advertisement

AAPS PharmSciTech

, Volume 19, Issue 3, pp 978–990 | Cite as

New Strategies for Improving the Development and Performance of Amorphous Solid Dispersions

  • Abbe Haser
  • Feng Zhang
Review Article

Abstract

The understanding of amorphous solid dispersions has grown significantly in the past decade. This is evident from the number of approved commercial amorphous solid dispersion products. While amorphous formulation is considered an enabling technology, it has become the norm for formulating poorly soluble compounds. Despite this success, improvements can still be made that enable early development formulation decisions, to develop a rationale for selecting a manufacturing process, to overcome degradation and phase separation during processing, to help achieve physical stability during storage, and to optimize dissolution behavior. The purpose of this literature review is to present recently reported strategies for improving the development and performance of ASDs. The benefits and limitations of each strategy as well as recent relevant case studies will be presented in this review. The strategies are presented from three different aspects: (a) prediction techniques that enable formulation decisions, (b) manufacturing considerations that help produce physically and chemically stable ASDs, and (c) formulation strategies that enhance dissolution behavior.

KEY WORDS

amorphous solid dispersion physical stability process impact chemical stability dissolution behavior 

References

  1. 1.
    Elder DP, Holm R, de Diego HL. Use of pharmaceutical salts and cocrystals to address the issue of poor solubility. Int J Pharm. 2013;453(1):88–100.  https://doi.org/10.1016/j.ijpharm.2012.11.028.CrossRefPubMedGoogle Scholar
  2. 2.
    Humberstone AJ, Charman WN. Lipid-based vehicles for the oral delivery of poorly water soluble drugs. Adv Drug Deliv Rev. 1997;25(1):103–28.  https://doi.org/10.1016/S0169-409X(96)00494-2.CrossRefGoogle Scholar
  3. 3.
    Mu H, Holm R, Müllertz A. Lipid-based formulations for oral administration of poorly water-soluble drugs. Int J Pharm. 2013;453(1):215–24.  https://doi.org/10.1016/j.ijpharm.2013.03.054.CrossRefPubMedGoogle Scholar
  4. 4.
    Challa R, Ahuja A, Ali J, Khar R. Cyclodextrins in drug delivery: an updated review. AAPS PharmSciTech. 2005;6(2):E329–E57.  https://doi.org/10.1208/pt060243.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Chen H, Khemtong C, Yang X, Chang X, Gao J. Nanonization strategies for poorly water-soluble drugs. Drug Discov Today. 2011;16(7):354–60.  https://doi.org/10.1016/j.drudis.2010.02.009.CrossRefPubMedGoogle Scholar
  6. 6.
    Hu J, Johnston KP, Williams RO III. Nanoparticle engineering processes for enhancing the dissolution rates of poorly water soluble drugs. Drug Dev Ind Pharm. 2004;30(3):233–45.  https://doi.org/10.1081/DDC-120030422.CrossRefPubMedGoogle Scholar
  7. 7.
    Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm. 2000;50(1):47–60.  https://doi.org/10.1016/S0939-6411(00)00076-X.CrossRefPubMedGoogle Scholar
  8. 8.
    Shah N, Sandhu H, Choi DS, Chokshi H, Malick AW. Amorphous solid dispersions. Theory and practice: Springer; 2014.  https://doi.org/10.1007/978-1-4939-1598-9.
  9. 9.
    Vasconcelos T, Sarmento B, Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today. 2007;12(23):1068–75.  https://doi.org/10.1016/j.drudis.2007.09.005.CrossRefPubMedGoogle Scholar
  10. 10.
    He Y, Ho C. Amorphous solid dispersions: utilization and challenges in drug discovery and development. J Pharm Sci. 2015;104(10):3237–58.  https://doi.org/10.1002/jps.24541.CrossRefPubMedGoogle Scholar
  11. 11.
    Haser A, DiNunzio JC, Martin C, McGinity JW, Zhang F. Melt extrusion. Formulating poorly water soluble drugs. Berlin: Springer; 2016. p. 383–435.CrossRefGoogle Scholar
  12. 12.
    Miller JM, Beig A, Carr RA, Spence JK, Dahan A. A win–win solution in oral delivery of lipophilic drugs: supersaturation via amorphous solid dispersions increases apparent solubility without sacrifice of intestinal membrane permeability. Mol Pharm. 2012;9(7):2009–16.  https://doi.org/10.1021/mp300104s.CrossRefPubMedGoogle Scholar
  13. 13.
    Hancock BC, Parks M. What is the true solubility advantage for amorphous pharmaceuticals? Pharm Res. 2000;17(4):397–404.  https://doi.org/10.1023/A:1007516718048.CrossRefPubMedGoogle Scholar
  14. 14.
    Hancock BC, Zografi G. Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci. 1997;86(1):1–12.  https://doi.org/10.1021/js9601896.CrossRefPubMedGoogle Scholar
  15. 15.
    Van Duong T, Van den Mooter G. The role of the carrier in the formulation of pharmaceutical solid dispersions. Part II: amorphous carriers. Expert Opin Drug Deliv. 2016;13(12):1681–94.  https://doi.org/10.1080/17425247.2016.1198769.CrossRefPubMedGoogle Scholar
  16. 16.
    Newman A, Knipp G, Zografi G. Assessing the performance of amorphous solid dispersions. J Pharm Sci. 2012;101(4):1355–77.  https://doi.org/10.1002/jps.23031.CrossRefPubMedGoogle Scholar
  17. 17.
    Qian F, Huang J, Hussain MA. Drug–polymer solubility and miscibility: stability consideration and practical challenges in amorphous solid dispersion development. J Pharm Sci. 2010;99(7):2941–7.  https://doi.org/10.1002/jps.22074.CrossRefPubMedGoogle Scholar
  18. 18.
    Baghel S, Cathcart H, O’Reilly NJ. Polymeric amorphous solid dispersions: a review of amorphization, crystallization, stabilization, solid-state characterization, and aqueous solubilization of biopharmaceutical classification system class II drugs. J Pharm Sci. 2016;105(9):2527–44.  https://doi.org/10.1016/j.xphs.2015.10.008.CrossRefPubMedGoogle Scholar
  19. 19.
    Mehta M, Suryanarayanan R. Accelerated physical stability testing of amorphous dispersions. Mol Pharm. 2016;13(8):2661–6.  https://doi.org/10.1021/acs.molpharmaceut.6b00218.CrossRefPubMedGoogle Scholar
  20. 20.
    Mehta M, Kothari K, Ragoonanan V, Suryanarayanan R. Effect of water on molecular mobility and physical stability of amorphous pharmaceuticals. Mol Pharm. 2016;13(4):1339–46.  https://doi.org/10.1021/acs.molpharmaceut.5b00950.CrossRefPubMedGoogle Scholar
  21. 21.
    Mistry P, Amponsah-Efah KK, Suryanarayanan R. Rapid assessment of the physical stability of amorphous solid dispersions. Cryst Growth Des. 2017;17(5):2478–85.  https://doi.org/10.1021/acs.cgd.6b01901.CrossRefGoogle Scholar
  22. 22.
    Fung MH, Suryanarayanan R. The use of a plasticizer for physical stability prediction of amorphous solid dispersions. Cryst Growth Des. 2017;17(8):4315–25.  https://doi.org/10.1021/acs.cgd.7b00625.CrossRefGoogle Scholar
  23. 23.
    Mistry P, Suryanarayanan R. Strength of drug–polymer interactions: implications for crystallization in dispersions. Cryst Growth Des. 2016;16(9):5141–9.  https://doi.org/10.1021/acs.cgd.6b00714.CrossRefGoogle Scholar
  24. 24.
    Bhardwaj SP, Arora KK, Kwong E, Templeton A, Clas S-D, Suryanarayanan R. Correlation between molecular mobility and physical stability of amorphous itraconazole. Mol Pharm. 2013;10(2):694–700.  https://doi.org/10.1021/mp300487u.CrossRefPubMedGoogle Scholar
  25. 25.
    Kothari K, Ragoonanan V, Suryanarayanan R. Influence of molecular mobility on the physical stability of amorphous pharmaceuticals in the supercooled and glassy states. Mol Pharm. 2014;11(9):3048–55.  https://doi.org/10.1021/mp500229d.CrossRefPubMedGoogle Scholar
  26. 26.
    Kothari K, Ragoonanan V, Suryanarayanan R. The role of polymer concentration on the molecular mobility and physical stability of nifedipine solid dispersions. Mol Pharm. 2015;12(5):1477–84.  https://doi.org/10.1021/mp500800c.CrossRefPubMedGoogle Scholar
  27. 27.
    Graeser KA, Patterson JE, Zeitler JA, Gordon KC, Rades T. Correlating thermodynamic and kinetic parameters with amorphous stability. Eur J Pharm Sci. 2009;37(3):492–8.  https://doi.org/10.1016/j.ejps.2009.04.005.CrossRefPubMedGoogle Scholar
  28. 28.
    Baird JA, Van Eerdenbrugh B, Taylor LS. A classification system to assess the crystallization tendency of organic molecules from undercooled melts. J Pharm Sci. 2010;99(9):3787–806.  https://doi.org/10.1002/jps.22197.CrossRefPubMedGoogle Scholar
  29. 29.
    Van Eerdenbrugh B, Baird JA, Taylor LS. Crystallization tendency of active pharmaceutical ingredients following rapid solvent evaporation—classification and comparison with crystallization tendency from under cooled melts. J Pharm Sci. 2010;99(9):3826–38.  https://doi.org/10.1002/jps.22214.CrossRefPubMedGoogle Scholar
  30. 30.
    Alhalaweh A, Alzghoul A, Kaialy W, Mahlin D, Bergström CAS. Computational predictions of glass-forming ability and crystallization tendency of drug molecules. Mol Pharm. 2014;11(9):3123–32.  https://doi.org/10.1021/mp500303a.CrossRefPubMedGoogle Scholar
  31. 31.
    Nurzyńska K, Booth J, Roberts CJ, McCabe J, Dryden I, Fischer PM. Long-term amorphous drug stability predictions using easily calculated, predicted, and measured parameters. Mol Pharm. 2015;12(9):3389–98.  https://doi.org/10.1021/acs.molpharmaceut.5b00409.CrossRefPubMedGoogle Scholar
  32. 32.
    Gupta J, Nunes C, Vyas S, Jonnalagadda S. Prediction of solubility parameters and miscibility of pharmaceutical compounds by molecular dynamics simulations. J Phys Chem B. 2011;115(9):2014–23.  https://doi.org/10.1021/jp108540n.CrossRefPubMedGoogle Scholar
  33. 33.
    Xiang TX, Anderson BD. Molecular dynamics simulation of amorphous indomethacin–poly (vinylpyrrolidone) glasses: solubility and hydrogen bonding interactions. J Pharm Sci. 2013;102(3):876–91.  https://doi.org/10.1002/jps.23353.CrossRefPubMedGoogle Scholar
  34. 34.
    Agrawal AM, Dudhedia MS, Patel AD, Raikes MS. Characterization and performance assessment of solid dispersions prepared by hot melt extrusion and spray drying process. Int J Pharm. 2013;457(1):71–81.  https://doi.org/10.1016/j.ijpharm.2013.08.081.CrossRefPubMedGoogle Scholar
  35. 35.
    Haser A, Cao T, Lubach J, Listro T, Acquarulo L, Zhang F. Melt extrusion vs. spray drying: the effect of processing methods on crystalline content of naproxen-povidone formulations. Eur J Pharm Sci. 2017;102:115–25.  https://doi.org/10.1016/j.ejps.2017.02.038.CrossRefPubMedGoogle Scholar
  36. 36.
    Tian Y, Caron V, Jones DS, Healy AM, Andrews GP. Using Flory–Huggins phase diagrams as a pre-formulation tool for the production of amorphous solid dispersions: a comparison between hot-melt extrusion and spray drying. J Pharm Pharmacol. 2014;66(2):256–74.  https://doi.org/10.1111/jphp.12141.CrossRefPubMedGoogle Scholar
  37. 37.
    Mahmah O, Tabbakh R, Kelly A, Paradkar A. A comparative study of the effect of spray drying and hot-melt extrusion on the properties of amorphous solid dispersions containing felodipine. J Pharm Pharmacol. 2014;66(2):275–84.  https://doi.org/10.1111/jphp.12099.CrossRefPubMedGoogle Scholar
  38. 38.
    Paudel A, Van den Mooter G. Influence of solvent composition on the miscibility and physical stability of naproxen/PVP K 25 solid dispersions prepared by cosolvent spray-drying. Pharm Res. 2012;29(1):251–70.  https://doi.org/10.1007/s11095-011-0539-x.CrossRefPubMedGoogle Scholar
  39. 39.
    Paudel A, Loyson Y, Van den Mooter G. An investigation into the effect of spray drying temperature and atomizing conditions on miscibility, physical stability, and performance of naproxen–PVP K 25 solid dispersions. J Pharm Sci. 2013;102(4):1249–67.  https://doi.org/10.1002/jps.23459.CrossRefPubMedGoogle Scholar
  40. 40.
    Lowinger M, Baumann J, Vodak DT, Moser J. Practical considerations for spray dried formulation and process development. In: Discovering and developing molecules with optimal drug-like properties. New York: Springer; 2015. p. 383–435.Google Scholar
  41. 41.
    Boraey MA, Vehring R. Diffusion controlled formation of microparticles. J Aerosol Sci. 2014;67:131–43.  https://doi.org/10.1016/j.jaerosci.2013.10.002.CrossRefGoogle Scholar
  42. 42.
    Huang S, O'Donnell KP, de Vaux SMD, O'Brien J, Stutzman J, Williams RO III. Processing thermally labile drugs by hot-melt extrusion: the lesson with gliclazide. Eur J Pharm Biopharm. 2017;119:56–67.  https://doi.org/10.1016/j.ejpb.2017.05.014.CrossRefPubMedGoogle Scholar
  43. 43.
    Haser A, Huang S, Listro T, White D, Zhang F. An approach for chemical stability during melt extrusion of a drug substance with a high melting point. Int J Pharm. 2017;524(1):55–64.  https://doi.org/10.1016/j.ijpharm.2017.03.070.CrossRefPubMedGoogle Scholar
  44. 44.
    Zhang F, Huang S, Williams RO. Methods of preparing extrudates. Google Patents; 2016.Google Scholar
  45. 45.
    Hengsawas Surasarang S, Keen JM, Huang S, Zhang F, McGinity JW, Williams RO III. Hot melt extrusion versus spray drying: hot melt extrusion degrades albendazole. Drug Dev Ind Pharm. 2017;43(5):797–811.  https://doi.org/10.1080/03639045.2016.1220577.CrossRefPubMedGoogle Scholar
  46. 46.
    Liu X, Lu M, Guo Z, Huang L, Feng X, Wu C. Improving the chemical stability of amorphous solid dispersion with cocrystal technique by hot melt extrusion. Pharm Res. 2012;29(3):806–17.  https://doi.org/10.1007/s11095-011-0605-4.CrossRefPubMedGoogle Scholar
  47. 47.
    Desai D, Sandhu H, Shah N, Malick W, Zia H, Phuapradit W, et al. Selection of solid-state plasticizers as processing aids for hot-melt extrusion. J Pharm Sci. 2018;107(1):372–9.  https://doi.org/10.1016/j.xphs.2017.09.004.CrossRefPubMedGoogle Scholar
  48. 48.
    Chauhan H, Kuldipkumar A, Barder T, Medek A, C-H G, Atef E. Correlation of inhibitory effects of polymers on indomethacin precipitation in solution and amorphous solid crystallization based on molecular interaction. Pharm Res. 2014;31(2):500–15.  https://doi.org/10.1007/s11095-013-1178-1.CrossRefPubMedGoogle Scholar
  49. 49.
    Surwase S, Itkonen L, Aaltonen J, Saville D, Rades T, Peltonen L, et al. Polymer incorporation method affects the physical stability of amorphous indomethacin in aqueous suspension. Eur J Pharm Biopharm. 2015;96:32–43.  https://doi.org/10.1016/j.ejpb.2015.06.005.CrossRefPubMedGoogle Scholar
  50. 50.
    Alonzo DE, Zhang GG, Zhou D, Gao Y, Taylor LS. Understanding the behavior of amorphous pharmaceutical systems during dissolution. Pharm Res. 2010;27(4):608–18.  https://doi.org/10.1007/s11095-009-0021-1.CrossRefPubMedGoogle Scholar
  51. 51.
    Raina SA, Alonzo DE, Zhang GG, Gao Y, Taylor LS. Impact of polymers on the crystallization and phase transition kinetics of amorphous nifedipine during dissolution in aqueous media. Mol Pharm. 2014;11(10):3565–76.  https://doi.org/10.1021/mp500333v.CrossRefPubMedGoogle Scholar
  52. 52.
    Knopp MM, Nguyen JH, Becker C, Francke NM, Jørgensen EB, Holm P, et al. Influence of polymer molecular weight on in vitro dissolution behavior and in vivo performance of celecoxib: PVP amorphous solid dispersions. Eur J Pharm Biopharm. 2016;101:145–51.  https://doi.org/10.1016/j.ejpb.2016.02.007.CrossRefPubMedGoogle Scholar
  53. 53.
    Sun DD, Lee PI. Probing the mechanisms of drug release from amorphous solid dispersions in medium-soluble and medium-insoluble carriers. J Control Release. 2015;211:85–93.  https://doi.org/10.1016/j.jconrel.2015.06.004.CrossRefPubMedGoogle Scholar
  54. 54.
    Sarode AL, Wang P, Obara S, Worthen DR. Supersaturation, nucleation, and crystal growth during single-and biphasic dissolution of amorphous solid dispersions: polymer effects and implications for oral bioavailability enhancement of poorly water soluble drugs. Eur J Pharm Biopharm. 2014;86(3):351–60.  https://doi.org/10.1016/j.ejpb.2013.10.005.CrossRefPubMedGoogle Scholar
  55. 55.
    Zecevic DE, Meier R, Daniels R, Wagner K-G. Site specific solubility improvement using solid dispersions of HPMC-AS/HPC SSL–mixtures. Eur J Pharm Biopharm. 2014;87(2):264–70.  https://doi.org/10.1016/j.ejpb.2014.03.018.CrossRefPubMedGoogle Scholar
  56. 56.
    Knopp MM, Nguyen JH, Mu H, Langguth P, Rades T, Holm R. Influence of copolymer composition on in vitro and in vivo performance of celecoxib-PVP/VA amorphous solid dispersions. AAPS J. 2016;18(2):416–23.  https://doi.org/10.1208/s12248-016-9865-6.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Xie T, Taylor LS. Dissolution performance of high drug loading celecoxib amorphous solid dispersions formulated with polymer combinations. Pharm Res. 2016;33(3):739–50.  https://doi.org/10.1007/s11095-015-1823-y.CrossRefPubMedGoogle Scholar
  58. 58.
    Xie T, Taylor LS. Improved release of celecoxib from high drug loading amorphous solid dispersions formulated with polyacrylic acid and cellulose derivatives. Mol Pharm. 2016;13(3):873–84.  https://doi.org/10.1021/acs.molpharmaceut.5b00798.CrossRefPubMedGoogle Scholar
  59. 59.
    Xie T, Gao W, Taylor LS. Impact of Eudragit EPO and hydroxypropyl methylcellulose on drug release rate, supersaturation, precipitation outcome and redissolution rate of indomethacin amorphous solid dispersions. Int J Pharm. 2017;531(1):313–23.  https://doi.org/10.1016/j.ijpharm.2017.08.099.CrossRefPubMedGoogle Scholar
  60. 60.
    Harmon P, Galipeau K, Xu W, Brown C, Wuelfing WP. Mechanism of dissolution-induced nanoparticle formation from a copovidone-based amorphous solid dispersion. Mol Pharm. 2016;13(5):1467–81.  https://doi.org/10.1021/acs.molpharmaceut.5b00863.CrossRefPubMedGoogle Scholar
  61. 61.
    Frank KJ, Westedt U, Rosenblatt KM, Hölig P, Rosenberg J, Mägerlein M, et al. What is the mechanism behind increased permeation rate of a poorly soluble drug from aqueous dispersions of an amorphous solid dispersion? J Pharm Sci. 2014;103(6):1779–86.  https://doi.org/10.1002/jps.23979.CrossRefPubMedGoogle Scholar
  62. 62.
    Lang B, Liu S, McGinity JW, Williams RO III. Effect of hydrophilic additives on the dissolution and pharmacokinetic properties of itraconazole-enteric polymer hot-melt extruded amorphous solid dispersions. Drug Dev Ind Pharm. 2016;42(3):429–45.  https://doi.org/10.3109/03639045.2015.1075031.CrossRefPubMedGoogle Scholar
  63. 63.
    França MT, Nicolay RP, Riekes MK, Pinto JM, Stulzer HK. Investigation of novel supersaturating drug delivery systems of chlorthalidone: the use of polymer-surfactant complex as an effective carrier in solid dispersions. Eur J Pharm Sci. 2018;11:142–52.  https://doi.org/10.1016/j.ejps.2017.09.043.
  64. 64.
    Thongnopkoon T, Puttipipatkhachorn S. Stabilizing ability of surfactant on physicochemical properties of drug nanoparticles generated from solid dispersions. Drug Dev Ind Pharm. 2017;43(7):1082–92.  https://doi.org/10.1080/03639045.2017.1291670.CrossRefPubMedGoogle Scholar
  65. 65.
    Chamsai B, Limmatvapirat S, Sungthongjeen S, Sriamornsak P. Enhancement of solubility and oral bioavailability of manidipine by formation of ternary solid dispersion with d-α-tocopherol polyethylene glycol 1000 succinate and copovidone. Drug Dev Ind Pharm. 2017;43(12):2064–75.  https://doi.org/10.1080/03639045.2017.1371731.
  66. 66.
    Chen J, Ormes JD, Higgins JD, Taylor LS. Impact of surfactants on the crystallization of aqueous suspensions of celecoxib amorphous solid dispersion spray dried particles. Mol Pharm. 2015;12(2):533–41.  https://doi.org/10.1021/mp5006245.CrossRefPubMedGoogle Scholar
  67. 67.
    Rashid R, Kim DW, Din FU, Mustapha O, Yousaf AM, Park JH, et al. Effect of hydroxypropylcellulose and Tween 80 on physicochemical properties and bioavailability of ezetimibe-loaded solid dispersion. Carbohydr Polym. 2015;130:26–31.  https://doi.org/10.1016/j.carbpol.2015.04.071.CrossRefPubMedGoogle Scholar
  68. 68.
    Chen Y, Wang S, Wang S, Liu C, Su C, Hageman M, et al. Sodium lauryl sulfate competitively interacts with HPMC-AS and consequently reduces oral bioavailability of posaconazole/HPMC-AS amorphous solid dispersion. Mol Pharm. 2016;13(8):2787–95.  https://doi.org/10.1021/acs.molpharmaceut.6b00391.CrossRefPubMedGoogle Scholar
  69. 69.
    Van den Mooter G, Wuyts M, Blaton N, Busson R, Grobet P, Augustijns P, et al. Physical stabilisation of amorphous ketoconazole in solid dispersions with polyvinylpyrrolidone K25. Eur J Pharm Sci. 2001;12(3):261–9.  https://doi.org/10.1016/S0928-0987(00)00173-1.CrossRefPubMedGoogle Scholar
  70. 70.
    Bhugra C, Shmeis R, Krill SL, Pikal MJ. Predictions of onset of crystallization from experimental relaxation times I-correlation of molecular mobility from temperatures above the glass transition to temperatures below the glass transition. Pharm Res. 2006;23(10):2277–90.  https://doi.org/10.1007/s11095-006-9079-1.CrossRefPubMedGoogle Scholar
  71. 71.
    Baird JA, Taylor LS. Evaluation of amorphous solid dispersion properties using thermal analysis techniques. Adv Drug Deliv Rev. 2012;64(5):396–421.  https://doi.org/10.1016/j.addr.2011.07.009.CrossRefPubMedGoogle Scholar
  72. 72.
    Vasanthavada M, Tong W-Q, Joshi Y, Kislalioglu MS. Phase behavior of amorphous molecular dispersions I: determination of the degree and mechanism of solid solubility. Pharm Res. 2004;21(9):1598–606.  https://doi.org/10.1023/B:PHAM.0000041454.76342.0e.CrossRefPubMedGoogle Scholar
  73. 73.
    Zhou D, Grant DJ, Zhang GG, Law D, Schmitt EA. A calorimetric investigation of thermodynamic and molecular mobility contributions to the physical stability of two pharmaceutical glasses. J Pharm Sci. 2007;96(1):71–83.  https://doi.org/10.1002/jps.20633.CrossRefPubMedGoogle Scholar
  74. 74.
    Zhou D, Zhang GG, Law D, Grant DJ, Schmitt EA. Physical stability of amorphous pharmaceuticals: importance of configurational thermodynamic quantities and molecular mobility. J Pharm Sci. 2002;91(8):1863–72.  https://doi.org/10.1002/jps.10169.CrossRefPubMedGoogle Scholar
  75. 75.
    Huang J, Wigent RJ, Schwartz JB. Drug–polymer interaction and its significance on the physical stability of nifedipine amorphous dispersion in microparticles of an ammonio methacrylate copolymer and ethylcellulose binary blend. J Pharm Sci. 2008;97(1):251–62.  https://doi.org/10.1002/jps.21072.CrossRefPubMedGoogle Scholar
  76. 76.
    Marsac PJ, Shamblin SL, Taylor LS. Theoretical and practical approaches for prediction of drug–polymer miscibility and solubility. Pharm Res. 2006;23(10):2417–26.  https://doi.org/10.1007/s11095-006-9063-9.CrossRefPubMedGoogle Scholar
  77. 77.
    Hancock BC, York P, Rowe RC. The use of solubility parameters in pharmaceutical dosage form design. Int J Pharm. 1997;148(1):1–21.  https://doi.org/10.1016/S0378-5173(96)04828-4.CrossRefGoogle Scholar
  78. 78.
    Greenhalgh DJ, Williams AC, Timmins P, York P. Solubility parameters as predictors of miscibility in solid dispersions. J Pharm Sci. 1999;88(11):1182–90.  https://doi.org/10.1021/js9900856.CrossRefPubMedGoogle Scholar
  79. 79.
    Marsac PJ, Li T, Taylor LS. Estimation of drug–polymer miscibility and solubility in amorphous solid dispersions using experimentally determined interaction parameters. Pharm Res. 2009;26(1):139–51.  https://doi.org/10.1007/s11095-008-9721-1.CrossRefPubMedGoogle Scholar
  80. 80.
    Huu-Phuoc N, Nam-Tran H, Buchmann M, Kesselring UW. Experimentally optimized determination of the partial and total cohesion parameters of an insoluble polymer (microcrystalline cellulose) by gas-solid chromatography. Int J Pharm. 1987;34(3):217–23.  https://doi.org/10.1016/0378-5173(87)90183-9.CrossRefGoogle Scholar
  81. 81.
    Paudel A, Worku ZA, Meeus J, Guns S, Van den Mooter G. Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: formulation and process considerations. Int J Pharm. 2013;453(1):253–84.  https://doi.org/10.1016/j.ijpharm.2012.07.015.CrossRefPubMedGoogle Scholar
  82. 82.
    Patel BB, Patel JK, Chakraborty S, Shukla D. Revealing facts behind spray dried solid dispersion technology used for solubility enhancement. Saudi Pharm J. 2015;23(4):352–65.  https://doi.org/10.1016/j.jsps.2013.12.013.CrossRefPubMedGoogle Scholar
  83. 83.
    Patterson JE, James MB, Forster AH, Lancaster RW, Butler JM, Rades T. Preparation of glass solutions of three poorly water soluble drugs by spray drying, melt extrusion and ball milling. Int J Pharm. 2007;336(1):22–34.  https://doi.org/10.1016/j.ijpharm.2006.11.030.CrossRefPubMedGoogle Scholar
  84. 84.
    Janssens S, De Zeure A, Paudel A, Van Humbeeck J, Rombaut P, Van den Mooter G. Influence of preparation methods on solid state supersaturation of amorphous solid dispersions: a case study with Itraconazole and Eudragit E100. Pharm Res. 2010;27(5):775–85.  https://doi.org/10.1007/s11095-010-0069-y.CrossRefPubMedGoogle Scholar
  85. 85.
    Dontireddy R, Crean AM. A comparative study of spray-dried and freeze-dried hydrocortisone/polyvinyl pyrrolidone solid dispersions. Drug Dev Ind Pharm. 2011;37(10):1141–9.  https://doi.org/10.3109/03639045.2011.562213.CrossRefPubMedGoogle Scholar
  86. 86.
    Surana R, Pyne A, Suryanarayanan R. Effect of preparation method on physical properties of amorphous trehalose. Pharm Res. 2004;21(7):1167–76.  https://doi.org/10.1023/B:PHAM.0000033003.17251.c3.CrossRefPubMedGoogle Scholar
  87. 87.
    Vasconcelos T, Marques S, das Neves J, Sarmento B. Amorphous solid dispersions: rational selection of a manufacturing process. Adv Drug Deliv Rev. 2016;100(Supplement C):85–101.  https://doi.org/10.1016/j.addr.2016.01.012.CrossRefPubMedGoogle Scholar
  88. 88.
    Meeus J, Scurr DJ, Amssoms K, Davies MC, Roberts CJ, Van den Mooter G. Surface characteristics of spray-dried microspheres consisting of PLGA and PVP: relating the influence of heat and humidity to the thermal characteristics of these polymers. Mol Pharm. 2013;10(8):3213–24.  https://doi.org/10.1021/mp400263d.CrossRefPubMedGoogle Scholar
  89. 89.
    Blessy M, Patel RD, Prajapati PN, Agrawal YK. Development of forced degradation and stability indicating studies of drugs—a review. J Pharm Anal. 2014;4(3):159–65.  https://doi.org/10.1016/j.jpha.2013.09.003.CrossRefPubMedGoogle Scholar
  90. 90.
    Yoshioka S, Stella VJ. Stability of drugs and dosage forms. New York: Kluwer Academic/Plenum Publishers; 2000.Google Scholar
  91. 91.
    Hughey JR, Keen JM, Brough C, Saeger S, McGinity JW. Thermal processing of a poorly water-soluble drug substance exhibiting a high melting point: the utility of KinetiSol® dispersing. Int J Pharm. 2011;419(1):222–30.  https://doi.org/10.1016/j.ijpharm.2011.08.007.CrossRefPubMedGoogle Scholar
  92. 92.
    Hughey JR, DiNunzio JC, Bennett RC, Brough C, Miller DA, Ma H, et al. Dissolution enhancement of a drug exhibiting thermal and acidic decomposition characteristics by fusion processing: a comparative study of hot melt extrusion and KinetiSol® dispersing. AAPS PharmSciTech. 2010;11(2):760–74.  https://doi.org/10.1208/s12249-010-9431-y.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Keen JM, McGinity JW. Melt extruded controlled release dosage forms. Melt extrusion. Berlin: Springer; 2013. p. 243–60.Google Scholar
  94. 94.
    Ghebremeskel AN, Vemavarapu C, Lodaya M. Use of surfactants as plasticizers in preparing solid dispersions of poorly soluble API: selection of polymer–surfactant combinations using solubility parameters and testing the processability. Int J Pharm. 2007;328(2):119–29.  https://doi.org/10.1016/j.ijpharm.2006.08.010.CrossRefPubMedGoogle Scholar
  95. 95.
    Verreck G, Decorte A, Heymans K, Adriaensen J, Liu D, Tomasko D, et al. Hot stage extrusion of p-amino salicylic acid with EC using CO2 as a temporary plasticizer. Int J Pharm. 2006;327(1):45–50.  https://doi.org/10.1016/j.ijpharm.2006.07.024.CrossRefPubMedGoogle Scholar
  96. 96.
    Brown C, DiNunzio J, Eglesia M, Forster S, Lamm M, Lowinger M, Marsac P, McKelvey C, Meyer R, Schenck L, Terife G. Hot-melt extrusion for solid dispersions: composition and design considerations. In: Amorphous solid dispersions. New York: Springer; 2014. p. 197–230.  https://doi.org/10.1007/978-1-4939-1598-9_6.
  97. 97.
    Guo Z, Lu M, Li Y, Pang H, Lin L, Liu X, et al. The utilization of drug–polymer interactions for improving the chemical stability of hot-melt extruded solid dispersions. J Pharm Pharmacol. 2014;66(2):285–96.  https://doi.org/10.1111/jphp.12145.CrossRefPubMedGoogle Scholar
  98. 98.
    Li Y, Pang H, Guo Z, Lin L, Dong Y, Li G, et al. Interactions between drugs and polymers influencing hot melt extrusion. J Pharm Pharmacol. 2014;66(2):148–66.  https://doi.org/10.1111/jphp.12183.CrossRefPubMedGoogle Scholar
  99. 99.
    LaFountaine JS, Jermain SV, Prasad LK, Brough C, Miller DA, Lubda D, et al. Enabling thermal processing of ritonavir–polyvinyl alcohol amorphous solid dispersions by KinetiSol® dispersing. Eur J Pharm Biopharm. 2016;101:72–81.  https://doi.org/10.1016/j.ejpb.2016.01.018.CrossRefPubMedGoogle Scholar
  100. 100.
    DiNunzio JC, Brough C, Hughey JR, Miller DA, Williams RO, McGinity JW. Fusion production of solid dispersions containing a heat-sensitive active ingredient by hot melt extrusion and Kinetisol® dispersing. Eur J Pharm Biopharm. 2010;74(2):340–51.  https://doi.org/10.1016/j.ejpb.2009.09.007.CrossRefPubMedGoogle Scholar
  101. 101.
    Martin C. Twin screw extrusion for pharmaceutical processes. Melt extrusion. Berlin: Springer; 2013. p. 47–79.Google Scholar
  102. 102.
    Mahmoudi ZN, Upadhye SB, Ferrizzi D, Rajabi-Siahboomi AR. In vitro characterization of a novel polymeric system for preparation of amorphous solid drug dispersions. AAPS J. 2014;16(4):685–97.  https://doi.org/10.1208/s12248-014-9590-y.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Prasad D, Chauhan H, Atef E. Role of molecular interactions for synergistic precipitation inhibition of poorly soluble drug in supersaturated drug–polymer–polymer ternary solution. Mol Pharm. 2016;13(3):756–65.  https://doi.org/10.1021/acs.molpharmaceut.5b00655.CrossRefPubMedGoogle Scholar
  104. 104.
    Venclexta® [package insert]. Genentech USA, Inc., South San Francisco, CA; 2016 [Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/208573s000lbl.pdf.
  105. 105.
    Veikira pak® [package insert]. AbbVie Inc., North Chicago, IL; 2014 [Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/206619lbl.pdf.
  106. 106.
    Kaletra® [package insert]. AbbVie Inc., North Chicago, IL; 2016. [Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/021251s052_021906s046lbl.pdf.
  107. 107.
    Orkambi® [package insert]. Vertex Pharmaceuticals Inc., Boston, MA; 2016. [Available from: http://pi.vrtx.com/files/uspi_lumacaftor_ivacaftor.pdf.
  108. 108.
    Mosquera-Giraldo LI, Trasi NS, Taylor LS. Impact of surfactants on the crystal growth of amorphous celecoxib. Int J Pharm. 2014;461(1):251–7.  https://doi.org/10.1016/j.ijpharm.2013.11.057.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  1. 1.Division of Pharmaceutics, College of Pharmacythe University of Texas at AustinAustinUSA
  2. 2.Department of Molecular Pharmaceutics and Drug DeliveryCollege of Pharmacy, University of Texas at AustinAustinUSA

Personalised recommendations