Skip to main content
Log in

Improving Properties of Albendazole Desmotropes by Supramolecular Systems with Maltodextrin and Glutamic Acid

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Albendazole, an effective broad-spectrum anthelmintic agent, showed unpredictable therapeutic response caused by poor water solubility and slow dissolution rate. Then, novel binary and multicomponent supramolecular systems of two different solid forms of albendazole (I and II) with maltodextrin alone or with glutamic acid were studied as an alternative to improve the oral bioavailability of albendazole. The interactions and effects on the properties of albendazole were studied in solution and solid state. The solid systems were characterized using Raman and Fourier transform-infrared spectroscopy, thermal analysis, powder X-ray diffraction, and scanning electron microscopy. The solubility measurements, performed in aqueous and simulated gastric fluid, showed that albendazole (form II) was the most soluble form, while its supramolecular systems showed the highest solubility in simulated gastric fluid. On the other hand, the dissolution profiles of binary and multicomponent systems in simulated gastric fluid displayed pronounced increments of the dissolved drug and a faster dissolution rate compared to those of free albendazole forms. Thus, these supramolecular structures constitute an interesting alternative to improve the physicochemical properties of albendazole, with potential application for the preparation of pharmaceutical oral formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bauer JF. Polymorphism: a critical consideration in pharmaceutical development, manufacturing and stability. J Technol. 2008;15–23.

  2. Brittain HG. Polymorphism and solvatomorphism 2010. J Pharm Sci. 2012;101(2):464–84. https://doi.org/10.1002/jps.22788.

    Article  CAS  PubMed  Google Scholar 

  3. Flórez J. Fármacos antiparasitarios. II. Helmintos y artrópodos. In: Farmacología Humana. Barcelona: Masson S.A.; 1998. p. 1239–47.

    Google Scholar 

  4. Barrera MG, Leonardi D, Bolmaro RE, Echenique CG, Olivieri AC, Salomon CJ, et al. In vivo evaluation of albendazole microspheres for the treatment of Toxocara canis larva migrans. Eur J Pharm Biopharm. 2010;75(3):451–4. https://doi.org/10.1016/j.ejpb.2010.03.017.

    Article  CAS  PubMed  Google Scholar 

  5. García A, Barrera MG, Piccirilli G, Vasconi MD, Di Masso RJ, Leonardi D, et al. Novel albendazole formulations given during the intestinal phase of Trichinella spiralis infection reduce effectively parasitic muscle burden in mice. Parasitol Int. 2013;62(6):568–70. https://doi.org/10.1016/j.parint.2013.08.009.

    Article  PubMed  Google Scholar 

  6. Solomon N, Kachani M, Zeyhle E, Macpherson CNL. The natural history of cystic echinococcosis in untreated and albendazole treated patients. Acta Trop. 2017;171:52–7. https://doi.org/10.1016/j.actatropica.2017.03.018.

    Article  CAS  PubMed  Google Scholar 

  7. Chattah AK, Zhang R, Mroue KH, Pfund LY, Longhi MR, Ramamoorthy A, et al. Investigating albendazole desmotropes by solid-state NMR spectroscopy. Mol Pharm. 2015;12(3):731–41. https://doi.org/10.1021/mp500539g.

    Article  CAS  PubMed  Google Scholar 

  8. Pranzo MB, Cruickshank D, Coruzzi M, Caira MR, Bettini R. Enantiotropically related albendazole polymorphs. J Pharm Sci. 2010;99(9):3731–42. https://doi.org/10.1002/jps.22072.

    Article  CAS  PubMed  Google Scholar 

  9. Martinez L, Lamprou DA, McBurney RT, Halbert GW. A novel hot-melt extrusion formulation of albendazole for increasing dissolution properties. Int J Pharm. 2016;499(1-2):175–85. https://doi.org/10.1016/j.ijpharm.2016.01.006.

    Article  Google Scholar 

  10. Priotti J, Codina AV, Leonardi D, Vasconi MD, Hinrichsen LI, Lamas MC. Albendazole microcrystal formulations based on chitosan and cellulose derivatives: physicochemical characterization and in vitro parasiticidal activity in Trichinella spiralis adult worms. AAPS PharmSciTech. 2017;18(4):947–56. https://doi.org/10.1208/s12249-016-0659-z.

    Article  CAS  PubMed  Google Scholar 

  11. Pradines B, Gallard JF, Iorga BI, Gueutin C, Loiseau PM, Ponchel G, et al. Investigation of the complexation of albendazole with cyclodextrins for the design of new antiparasitic formulations. Carbohydr Res. 2014;398:50–5. https://doi.org/10.1016/j.carres.2014.06.008.

    Article  CAS  PubMed  Google Scholar 

  12. Chattah AK, Pfund LY, Zoppi A, Longhi MR, Garnero C. Toward novel antiparasitic formulations: complexes of albendazole desmotropes and β-cyclodextrin. Carbohydr Polym. 2017;164:379–85. https://doi.org/10.1016/j.carbpol.2017.01.098.

    Article  CAS  PubMed  Google Scholar 

  13. Gurrapu A, Jukanti R, Bobbala SR, Kanuganti S, Jeevana JB. Improved oral delivery of valsartan from maltodextrin based proniosome powders. Adv Powder Technol. 2012;23(5):583–90. https://doi.org/10.1016/j.apt.2011.06.005.

    Article  CAS  Google Scholar 

  14. Ku R, Sahoo N, Arijit Guha B, Sahoo N, Kuotsu K. Development and in vitro/in vivo evaluation of controlled release provesicles of a nateglinide maltodextrin complex. Acta Pharma Sin B. 2014;4(5):408–16.

    Article  Google Scholar 

  15. Zhang J, Zhang X, Wang X, Huang Y, Yang B, Pan X, et al. The influence of maltodextrin on the physicochemical properties and stabilization of beta-carotene emulsions. AAPS PharmSciTech. 2017;18(3):821–8. https://doi.org/10.1208/s12249-016-0572-5.

    Article  CAS  PubMed  Google Scholar 

  16. Aiassa V, Zoppi A, Albesa I, Longhi MR. Inclusion complexes of chloramphenicol with β-cyclodextrin and aminoacids as a way to increase drug solubility and modulate Ros production. Carbohydr Polym. 2014;121:320–7. https://doi.org/10.1016/j.carbpol.2014.11.017.

    Article  PubMed  Google Scholar 

  17. Granero GE, Maitre MM, Garnero C, Longhi MR. Synthesis, characterization and in vitro release studies of a new acetazolamide–HP-β-CD–TEA inclusion complex. Eur J Med Chem. 2008;43(3):464–70. https://doi.org/10.1016/j.ejmech.2007.03.037.

    Article  CAS  PubMed  Google Scholar 

  18. Aiassa V, Zoppi A, Albesa I, Longhi MR. Inclusion complexes of chloramphenicol with β-cyclodextrin and aminoacids as a way to increase drug solubility and modulate ROS production. Carbohyd Pol. 2015;121:320–7. https://doi.org/10.1016/j.carbpol.2014.11.017.

    Article  CAS  Google Scholar 

  19. Mura P, Maestrelli F, Cirri M. Ternary systems of naproxen with hydroxypropyl-β-cyclodextrin and aminoacids. Int J Pharm. 2003;260(2):293–302. https://doi.org/10.1016/S0378-5173(03)00265-5.

    Article  CAS  PubMed  Google Scholar 

  20. Higuchi T, Connors KA. Phase-solubility techniques in advances. In: Analytical chemistry and instrumentation, vol. 4. New York: Interscience; 1965. p. 117–212.

    Google Scholar 

  21. Moore WJ, Flanner HH. Mathematical comparison of dissolution profiles. Pharm Technol. 1996;20:64–74.

    Google Scholar 

  22. Costa P. An alternative method to the evaluation of similarity factor in dissolution testing. Int J Pharm. 2001;220(1-2):77–83. https://doi.org/10.1016/S0378-5173(01)00651-2.

    Article  CAS  PubMed  Google Scholar 

  23. Garnero C, Aloisio M, Longhi M. Ibuprofen-maltodextrin interaction: study of enantiomeric recognition and complex characterization. Pharmacol Pharm. 2013;4(01):18–30. https://doi.org/10.4236/pp.2013.41003.

    Article  Google Scholar 

  24. Lindenberg M, Kopp S, Dressman JB. Classification of orally administered drugs on the World Health Organization model list of essential medicines according to the biopharmaceutics classification system. Eur J Pharm Biopharm. 2004;58(2):265–78. https://doi.org/10.1016/j.ejpb.2004.03.001.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Authors wish to acknowledge the assistance of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and the Universidad Nacional de Córdoba, both of which provided support and facilities for this investigation. Also, project MinCyT-CONICET-CAPES is gratefully acknowledged.

Funding

The authors thank the Fondo para la Investigación Científica y Tecnológica (FONCYT) [Préstamo BID PICT 2013-0504], the Secretaría de Ciencia y Técnica de la Universidad Nacional de Córdoba (SECyT), and the Brazilian National Council for Scientific and Technological Development (CNPQ) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Garnero.

Electronic Supplementary Material

ESM 1

(DOCX 117 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bongioanni, A., Araújo, B.S., de Oliveira, Y.S. et al. Improving Properties of Albendazole Desmotropes by Supramolecular Systems with Maltodextrin and Glutamic Acid. AAPS PharmSciTech 19, 1468–1476 (2018). https://doi.org/10.1208/s12249-018-0952-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-018-0952-0

KEY WORDS

Navigation