Advertisement

AAPS PharmSciTech

, Volume 19, Issue 3, pp 1468–1476 | Cite as

Improving Properties of Albendazole Desmotropes by Supramolecular Systems with Maltodextrin and Glutamic Acid

  • Agustina Bongioanni
  • Bruno Sousa Araújo
  • Yara Santiago de Oliveira
  • Marcela R. Longhi
  • Alejandro Ayala
  • Claudia Garnero
Research Article

Abstract

Albendazole, an effective broad-spectrum anthelmintic agent, showed unpredictable therapeutic response caused by poor water solubility and slow dissolution rate. Then, novel binary and multicomponent supramolecular systems of two different solid forms of albendazole (I and II) with maltodextrin alone or with glutamic acid were studied as an alternative to improve the oral bioavailability of albendazole. The interactions and effects on the properties of albendazole were studied in solution and solid state. The solid systems were characterized using Raman and Fourier transform-infrared spectroscopy, thermal analysis, powder X-ray diffraction, and scanning electron microscopy. The solubility measurements, performed in aqueous and simulated gastric fluid, showed that albendazole (form II) was the most soluble form, while its supramolecular systems showed the highest solubility in simulated gastric fluid. On the other hand, the dissolution profiles of binary and multicomponent systems in simulated gastric fluid displayed pronounced increments of the dissolved drug and a faster dissolution rate compared to those of free albendazole forms. Thus, these supramolecular structures constitute an interesting alternative to improve the physicochemical properties of albendazole, with potential application for the preparation of pharmaceutical oral formulations.

KEY WORDS

albendazole desmotrope maltodextrin glutamic acid solubility dissolution 

Notes

Acknowledgments

Authors wish to acknowledge the assistance of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and the Universidad Nacional de Córdoba, both of which provided support and facilities for this investigation. Also, project MinCyT-CONICET-CAPES is gratefully acknowledged.

Funding

The authors thank the Fondo para la Investigación Científica y Tecnológica (FONCYT) [Préstamo BID PICT 2013-0504], the Secretaría de Ciencia y Técnica de la Universidad Nacional de Córdoba (SECyT), and the Brazilian National Council for Scientific and Technological Development (CNPQ) for financial support.

Supplementary material

12249_2018_952_MOESM1_ESM.docx (117 kb)
ESM 1 (DOCX 117 kb)

References

  1. 1.
    Bauer JF. Polymorphism: a critical consideration in pharmaceutical development, manufacturing and stability. J Technol. 2008;15–23.Google Scholar
  2. 2.
    Brittain HG. Polymorphism and solvatomorphism 2010. J Pharm Sci. 2012;101(2):464–84.  https://doi.org/10.1002/jps.22788.CrossRefPubMedGoogle Scholar
  3. 3.
    Flórez J. Fármacos antiparasitarios. II. Helmintos y artrópodos. In: Farmacología Humana. Barcelona: Masson S.A.; 1998. p. 1239–47.Google Scholar
  4. 4.
    Barrera MG, Leonardi D, Bolmaro RE, Echenique CG, Olivieri AC, Salomon CJ, et al. In vivo evaluation of albendazole microspheres for the treatment of Toxocara canis larva migrans. Eur J Pharm Biopharm. 2010;75(3):451–4.  https://doi.org/10.1016/j.ejpb.2010.03.017.CrossRefPubMedGoogle Scholar
  5. 5.
    García A, Barrera MG, Piccirilli G, Vasconi MD, Di Masso RJ, Leonardi D, et al. Novel albendazole formulations given during the intestinal phase of Trichinella spiralis infection reduce effectively parasitic muscle burden in mice. Parasitol Int. 2013;62(6):568–70.  https://doi.org/10.1016/j.parint.2013.08.009.CrossRefPubMedGoogle Scholar
  6. 6.
    Solomon N, Kachani M, Zeyhle E, Macpherson CNL. The natural history of cystic echinococcosis in untreated and albendazole treated patients. Acta Trop. 2017;171:52–7.  https://doi.org/10.1016/j.actatropica.2017.03.018.CrossRefPubMedGoogle Scholar
  7. 7.
    Chattah AK, Zhang R, Mroue KH, Pfund LY, Longhi MR, Ramamoorthy A, et al. Investigating albendazole desmotropes by solid-state NMR spectroscopy. Mol Pharm. 2015;12(3):731–41.  https://doi.org/10.1021/mp500539g.CrossRefPubMedGoogle Scholar
  8. 8.
    Pranzo MB, Cruickshank D, Coruzzi M, Caira MR, Bettini R. Enantiotropically related albendazole polymorphs. J Pharm Sci. 2010;99(9):3731–42.  https://doi.org/10.1002/jps.22072.CrossRefPubMedGoogle Scholar
  9. 9.
    Martinez L, Lamprou DA, McBurney RT, Halbert GW. A novel hot-melt extrusion formulation of albendazole for increasing dissolution properties. Int J Pharm. 2016;499(1-2):175–85.  https://doi.org/10.1016/j.ijpharm.2016.01.006.CrossRefGoogle Scholar
  10. 10.
    Priotti J, Codina AV, Leonardi D, Vasconi MD, Hinrichsen LI, Lamas MC. Albendazole microcrystal formulations based on chitosan and cellulose derivatives: physicochemical characterization and in vitro parasiticidal activity in Trichinella spiralis adult worms. AAPS PharmSciTech. 2017;18(4):947–56.  https://doi.org/10.1208/s12249-016-0659-z.CrossRefPubMedGoogle Scholar
  11. 11.
    Pradines B, Gallard JF, Iorga BI, Gueutin C, Loiseau PM, Ponchel G, et al. Investigation of the complexation of albendazole with cyclodextrins for the design of new antiparasitic formulations. Carbohydr Res. 2014;398:50–5.  https://doi.org/10.1016/j.carres.2014.06.008.CrossRefPubMedGoogle Scholar
  12. 12.
    Chattah AK, Pfund LY, Zoppi A, Longhi MR, Garnero C. Toward novel antiparasitic formulations: complexes of albendazole desmotropes and β-cyclodextrin. Carbohydr Polym. 2017;164:379–85.  https://doi.org/10.1016/j.carbpol.2017.01.098.CrossRefPubMedGoogle Scholar
  13. 13.
    Gurrapu A, Jukanti R, Bobbala SR, Kanuganti S, Jeevana JB. Improved oral delivery of valsartan from maltodextrin based proniosome powders. Adv Powder Technol. 2012;23(5):583–90.  https://doi.org/10.1016/j.apt.2011.06.005.CrossRefGoogle Scholar
  14. 14.
    Ku R, Sahoo N, Arijit Guha B, Sahoo N, Kuotsu K. Development and in vitro/in vivo evaluation of controlled release provesicles of a nateglinide maltodextrin complex. Acta Pharma Sin B. 2014;4(5):408–16.CrossRefGoogle Scholar
  15. 15.
    Zhang J, Zhang X, Wang X, Huang Y, Yang B, Pan X, et al. The influence of maltodextrin on the physicochemical properties and stabilization of beta-carotene emulsions. AAPS PharmSciTech. 2017;18(3):821–8.  https://doi.org/10.1208/s12249-016-0572-5.CrossRefPubMedGoogle Scholar
  16. 16.
    Aiassa V, Zoppi A, Albesa I, Longhi MR. Inclusion complexes of chloramphenicol with β-cyclodextrin and aminoacids as a way to increase drug solubility and modulate Ros production. Carbohydr Polym. 2014;121:320–7.  https://doi.org/10.1016/j.carbpol.2014.11.017.CrossRefPubMedGoogle Scholar
  17. 17.
    Granero GE, Maitre MM, Garnero C, Longhi MR. Synthesis, characterization and in vitro release studies of a new acetazolamide–HP-β-CD–TEA inclusion complex. Eur J Med Chem. 2008;43(3):464–70.  https://doi.org/10.1016/j.ejmech.2007.03.037.CrossRefPubMedGoogle Scholar
  18. 18.
    Aiassa V, Zoppi A, Albesa I, Longhi MR. Inclusion complexes of chloramphenicol with β-cyclodextrin and aminoacids as a way to increase drug solubility and modulate ROS production. Carbohyd Pol. 2015;121:320–7.  https://doi.org/10.1016/j.carbpol.2014.11.017.CrossRefGoogle Scholar
  19. 19.
    Mura P, Maestrelli F, Cirri M. Ternary systems of naproxen with hydroxypropyl-β-cyclodextrin and aminoacids. Int J Pharm. 2003;260(2):293–302.  https://doi.org/10.1016/S0378-5173(03)00265-5.CrossRefPubMedGoogle Scholar
  20. 20.
    Higuchi T, Connors KA. Phase-solubility techniques in advances. In: Analytical chemistry and instrumentation, vol. 4. New York: Interscience; 1965. p. 117–212.Google Scholar
  21. 21.
    Moore WJ, Flanner HH. Mathematical comparison of dissolution profiles. Pharm Technol. 1996;20:64–74.Google Scholar
  22. 22.
    Costa P. An alternative method to the evaluation of similarity factor in dissolution testing. Int J Pharm. 2001;220(1-2):77–83.  https://doi.org/10.1016/S0378-5173(01)00651-2.CrossRefPubMedGoogle Scholar
  23. 23.
    Garnero C, Aloisio M, Longhi M. Ibuprofen-maltodextrin interaction: study of enantiomeric recognition and complex characterization. Pharmacol Pharm. 2013;4(01):18–30.  https://doi.org/10.4236/pp.2013.41003.CrossRefGoogle Scholar
  24. 24.
    Lindenberg M, Kopp S, Dressman JB. Classification of orally administered drugs on the World Health Organization model list of essential medicines according to the biopharmaceutics classification system. Eur J Pharm Biopharm. 2004;58(2):265–78.  https://doi.org/10.1016/j.ejpb.2004.03.001.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  • Agustina Bongioanni
    • 1
    • 2
  • Bruno Sousa Araújo
    • 3
  • Yara Santiago de Oliveira
    • 4
  • Marcela R. Longhi
    • 1
    • 2
  • Alejandro Ayala
    • 3
  • Claudia Garnero
    • 1
    • 2
  1. 1.Departamento de Ciencias Farmacéuticas, Facultad de Ciencias QuímicasUniversidad Nacional de CórdobaCórdobaArgentina
  2. 2.Unidad de Investigación y Desarrollo en Tecnología Farmacéutica—UNITEFA (CONICET-UNC)CórdobaArgentina
  3. 3.Departamento de FísicaUniversidade Federal do CearáFortalezaBrazil
  4. 4.Departamento de FarmáciaUniversidade Federal do CearáFortalezaBrazil

Personalised recommendations