AAPS PharmSciTech

, Volume 19, Issue 3, pp 1274–1286 | Cite as

Structural Elucidation of Poloxamer 237 and Poloxamer 237/Praziquantel Solid Dispersions: Impact of Poly(Vinylpyrrolidone) over Drug Recrystallization and Dissolution

  • Silvina Orlandi
  • Josefina Priotti
  • Hermínio P. Diogo
  • Dario Leonardi
  • Claudio J. Salomon
  • Teresa G. Nunes
Research Article


Praziquantel (PZQ) is the recommended, effective, and safe treatment against all forms of schistosomiasis. Solid dispersions (SDs) in water-soluble polymers have been reported to increase solubility and bioavailability of poorly water-soluble drugs like PZQ, generally due to the amorphous form stabilization. In this work, poloxamer (PLX) 237 and poly(vinylpyrrolidone) (PVP) K30 were evaluated as potential carriers to revert PZQ crystallization. Binary and ternary SDs were prepared by the solvent evaporation method. PZQ solubility increased similarly with PLX either as binary physical mixtures or SDs. Such unpredicted data correlated well with crystalline PZQ and PLX as detected by solid-state NMR (ssNMR) and differential scanning calorimetry in those samples. Ternary PVP/PLX/PZQ SDs showed both ssNMR broad and narrow superimposed signals, thus revealing the presence of amorphous and crystalline PZQ, respectively, and exhibited the highest PZQ dissolution efficiency (up to 82% at 180 min). SDs with PVP provided a promising way to enhance solubility and dissolution rate of PZQ since PLX alone did not prevent recrystallization of amorphous PZQ. Based on ssNMR data, novel evidences on PLX structure and molecular dynamics were also obtained. As shown for the first time using ssNMR, propylene glycol and ethylene glycol constitute the PLX amorphous and crystalline components, respectively.


praziquantel poloxamer PVP solid dispersions DSC solid-state NMR 



J.P thanks CONICET (Argentina) for a Ph.D. fellowship. The authors thank Msc. E. Costa for the acquisition of some DSC and NMR data during his fellowship period (FCT, BL-CQE/2015-011) and Dr. M.J. Ferreira for NMR assistance.

Supplementary material

12249_2017_946_MOESM1_ESM.doc (1.4 mb)
ESM 1 (DOC 1435 kb)


  1. 1.
    WHO, 2017a. World Health Organization. Media Center. Schistosomiasis. http://www.who.int/mediacentre/factsheets/fs115/en/. Accessed 10 Aug 2017.
  2. 2.
    WHO, 2017b. World Health Organization. Schistosomiasis. Strategy. http://www.who.int/schistosomiasis/strategy/en/. Accessed 10 Aug 2017.
  3. 3.
    Lindenberg M, Kopp S, Dressman JB. Classification of orally administered drugs on the World Health Organization model list of essential medicines according to the biopharmaceutics classification system. Eur J Pharm Biopharm. 2004;58(2):265–78.  https://doi.org/10.1016/j.ejpb.2004.03.001.CrossRefPubMedGoogle Scholar
  4. 4.
    De La Torre P, Torrado S, Torrado S. Preparation, dissolution and characterization of praziquantel solid dispersions. Chem Pharm Bull. 1999;47(11):1629–33.  https://doi.org/10.1248/cpb.47.1629.CrossRefGoogle Scholar
  5. 5.
    Frezza TF, Gremião MP, Zanotti-Magalhães EA, Magalhães LA, Ribeiro de Souza AL, Allegretti SM. Liposomal-praziquantel: efficacy against Schistosoma mansoni in a preclinical assay. Acta Trop. 2013;128(1):70–5.  https://doi.org/10.1016/j.actatropica.2013.06.011.CrossRefPubMedGoogle Scholar
  6. 6.
    Meyer T, Sekljic H, Fuchs S, Bothe H, Schollmeyer D, Miculka C. Taste, a new incentive to switch to (R)-praziquantel in schistosomiasis treatment. PLoS Negl Trop Dis. 2009;3(1):e357.  https://doi.org/10.1371/journal.pntd.0000357.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Perissutti B, Passerini N, Trastullo R, Keiser J, Zanolla D, Zingone G, et al. An explorative analysis of process and formulation variables affecting comilling in a vibrational mill: the case of praziquantel. Int J Pharm. 2017;533(2):402–12.  https://doi.org/10.1016/j.ijpharm.2017.05.053.CrossRefGoogle Scholar
  8. 8.
    Arrúa EC, Ferreira MJG, Salomon CJ, Nunes TG. Elucidating the guest-host interactions and complex formation of praziquantel and cyclodextrin derivatives by 13C and 15N solid-state NMR spectroscopy. Int J Pharm. 2015;496(2):812–21.  https://doi.org/10.1016/j.ijpharm.2015.11.026.CrossRefPubMedGoogle Scholar
  9. 9.
    Chaud MV, Tamascia P, de Lima AC, Paganelli MO, Gremião MPD, de Freitas O. Solid dispersions with hydrogenated castor oil increase solubility, dissolution rate and intestinal absorption of praziquantel. Braz J Pharm Sci. 2010;46(3):473–81.  https://doi.org/10.1590/S1984-82502010000300010.CrossRefGoogle Scholar
  10. 10.
    Bagade O, Shete A, Dhole S, Pujari R, Raskar V, Kharat P. Design and statistical optimisation of praziquantel tablets by using solid dispersion approach. Asian J Pharm. 2015;9(2):83–92.  https://doi.org/10.4103/0973-8398.154689.CrossRefGoogle Scholar
  11. 11.
    Dametto PR, Dametto AC, Polese L, Ribeiro CA, Chorilli M, de Freitas O. Development and physicochemical characterization of solid dispersions containing praziquantel for the treatment of schistosomiasis. J Therm Anal Calorim. 2017;127(2):1693–706.  https://doi.org/10.1007/s10973-016-5759-1.CrossRefGoogle Scholar
  12. 12.
    Baghel S, Cathcart H, O'Reilly NJ. Polymeric amorphous solid dispersions: a review of amorphization, crystallization, stabilization, solid-state characterization, and aqueous solubilization of biopharmaceutical classification system class II drugs. J Pharm Sci. 2016;105(9):2527–44.  https://doi.org/10.1016/j.xphs.2015.10.008.CrossRefPubMedGoogle Scholar
  13. 13.
    Tian Y, Jones DS, Andrews GP. An investigation into the role of polymeric carriers on crystal growth within amorphous solid dispersion systems. Mol Pharm. 2015;12(4):1180–92.  https://doi.org/10.1021/mp500702s.CrossRefPubMedGoogle Scholar
  14. 14.
    Gupta P, Kakumanu VK, Bansal AK. Stability and solubility of celecoxib-PVP amorphous dispersions: a molecular perspective. Pharm Res. 2004;21(10):1762–9.  https://doi.org/10.1023/B:PHAM.0000045226.42859.b8.CrossRefPubMedGoogle Scholar
  15. 15.
    Shah J, Vasanti S, Anroop B, Vyas H. Enhancement of dissolution rate of valdecoxib by solid dispersions technique with PVP K 30 & PEG 4000: preparation and in vitro evaluation. J Incl Phenom Macrocycl Chem. 2009;63(1-2):69–75.  https://doi.org/10.1007/s10847-008-9490-9.CrossRefGoogle Scholar
  16. 16.
    Joe JH, Lee WM, Park YJ, Joe KH, DH O, Seo YG, et al. Effect of the solid-dispersion method on the solubility and crystalline property of tacrolimus. Int J Pharm. 2010;395(1-2):161–6.  https://doi.org/10.1016/j.ijpharm.2010.05.023.CrossRefPubMedGoogle Scholar
  17. 17.
    Costa ED, Priotti J, Orlandi S, Leonardi D, Lamas MC, Nunes TG, et al. Unexpected solvent impact in the crystallinity of praziquantel/poly(vinylpyrrolidone) formulations. A solubility, DSC and solid-state NMR study. Int J Pharm. 2016;511(2):983–93.  https://doi.org/10.1016/j.ijpharm.2016.08.009.CrossRefPubMedGoogle Scholar
  18. 18.
    Devi DR, Sandhya P, Hari BV. Poloxamer: a novel functional molecule for drug delivery and gene therapy. J Pharm Sci Res. 2013;5:159–65.Google Scholar
  19. 19.
    Pitto-Barry A, Barry NPE. Pluronic® block-copolymers in medicine: from chemical and biological versatility to rationalisation and clinical advances. Polym Chem. 2014;5(10):3291–7.  https://doi.org/10.1039/C4PY00039K.CrossRefGoogle Scholar
  20. 20.
    Beck-Broichsitter M, Bohr A, Ruge CA. Poloxamer-decorated polymer nanoparticles for lung surfactant compatibility. Mol Pharm. 2017;14(10):3464–72.  https://doi.org/10.1021/acs.molpharmaceut.7b00477.CrossRefPubMedGoogle Scholar
  21. 21.
    Essa EA, Balata GF. Preparation and characterization of domperidone solid dispersions. Pak J Pharm Sci. 2012;25(4):783–91.PubMedGoogle Scholar
  22. 22.
    Rao M,M,Y, Khole I, Munjapara G. Characterization of solid dispersions of simvastatin with PVP K30 and Poloxamer 188. Ind J Pharm Edu Res. 2011;45:145–52.Google Scholar
  23. 23.
    Fousteris E, Tarantili PA, Karavas E, Bikiaris D. Poly(vinyl pyrrolidone)–poloxamer-188 solid dispersions prepared by hot melt extrusion. J Therm Anal Calorim. 2013;113(3):1037–47.  https://doi.org/10.1007/s10973-012-2885-2.CrossRefGoogle Scholar
  24. 24.
    Chen Z, Liu Z, Qian F. Crystallization of bifonazole and acetaminophen within the matrix of semicrystalline, PEO-PPO-PEO triblock copolymers. Mol Pharm. 2015;12(2):590–9.  https://doi.org/10.1021/mp500661v.CrossRefPubMedGoogle Scholar
  25. 25.
    United States Pharmacopeia and National Formulary (USP 30 NF 25). Rockville, MD: United States Pharmacopeial Convention; 2007.Google Scholar
  26. 26.
    Moura Ramos JJ, Taveira-Marques R, Diogo HP. Estimation of the fragility index of indomethacin by DSC using the heating and cooling rate dependency of the glass transition. J Pharm Sci. 2004;93(6):1503–7.  https://doi.org/10.1002/jps.20061.CrossRefGoogle Scholar
  27. 27.
    Dixon WT, Schaefer J, Sefcik MD, Stejskal EO, McKay RA. Total suppression of sidebands in CPMAS C-13 NMR. J Magn Reson. 1982;49(2):341–5.  https://doi.org/10.1016/0022-2364(82)90199-8.Google Scholar
  28. 28.
    Kolodziejski W, Klinowski J. Kinetics of cross-polarization in solid-state NMR: a guide for chemists. Chem Rev. 2002;102(3):613–28.  https://doi.org/10.1021/cr000060n.CrossRefPubMedGoogle Scholar
  29. 29.
    Oo MK, Mandal UK, Chatterjee B. Polymeric behavior evaluation of PVP K30-poloxamer binary carrier for solid dispersed nisoldipine by experimental design. Pharm Dev Technol. 2015;22(1):2–12.  https://doi.org/10.3109/10837450.2015.1116568.Google Scholar
  30. 30.
    Kolašinac N, Kachrimanis K, Homšek I, Grujić B, Ðurić Z, Ibrić S. Solubility enhancement of desloratadine by solid dispersion in poloxamers. Int J Pharm. 2012;436(1-2):161–70.  https://doi.org/10.1016/j.ijpharm.2012.06.060.CrossRefPubMedGoogle Scholar
  31. 31.
    Chan S-Y, Chung Y-Y, Cheah X-Z, Tan EY-L, Quah J. The characterization and dissolution performances of spray dried solid dispersion of ketoprofen in hydrophilic carriers. Asian J Pharm Sci. 2015;10(5):372–85.  https://doi.org/10.1016/j.ajps.2015.04.003.CrossRefGoogle Scholar
  32. 32.
    Hasegawa Y, Higashi K, Yamamoto K, Moribe K. Direct evaluation of molecular states of piroxicam/poloxamer nanosuspension by suspended-state NMR and Raman spectroscopies. Mol Pharm. 2015;12(5):1564–72.  https://doi.org/10.1021/mp500872g.CrossRefPubMedGoogle Scholar
  33. 33.
    Hediger S, Emsley L, Fischer M. Solid-state NMR characterization of hydration effects on polymer mobility in onion cell-wall material. Carbohydr Res. 1999;322(1-2):102–12.  https://doi.org/10.1016/S0008-6215(99)00195-0.CrossRefGoogle Scholar
  34. 34.
    Reinsberg SA, Ando S, Harris RK. Fluorine-19 NMR investigation of poly(trifluoroethylene). Polymer. 2000;41(10):3729–36.  https://doi.org/10.1016/S0032-3861(99)00518-2.CrossRefGoogle Scholar
  35. 35.
    Koenig JL. Spectroscopy of polymers. 2nd ed. New York: Elsevier Science Inc; 1999.Google Scholar
  36. 36.
    Trastullo R, Dolci LS, Passerini N, Albertini B. Development of flexible and dispersible oral formulations containing praziquantel for potential schistosomiasis treatment of pre-school age children. Int J Pharm. 2015;495(1):536–50.  https://doi.org/10.1016/j.ijpharm.2015.09.019.CrossRefPubMedGoogle Scholar
  37. 37.
    Blundell DJ. On the interpretation of multiple melting peaks in poly(ether ether ketone). Polymer. 1987;28(13):2248–51.  https://doi.org/10.1016/0032-3861(87)90382-X.CrossRefGoogle Scholar
  38. 38.
    Alizadeh A, Richardson L, Xu J, McCartney S, Marand H, Cheung Y, et al. Influence of structural and topological constraints on the crystallization and melting behavior of polymers. 1. Ethylene/1-octene copolymers. Macromolecules. 1999;32(19):6221–35.  https://doi.org/10.1021/ma990669u.CrossRefGoogle Scholar
  39. 39.
    Nasu M, Nemoto T, Mimura H, Sako K. Development of qualitative and quantitative analysis methods in pharmaceutical application with new selective signal excitation methods for 13C solid-state nuclear magnetic resonance using 1H T1rho relaxation time. J Pharm Sci. 2013;102(1):154–61.  https://doi.org/10.1002/jps.23345.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  • Silvina Orlandi
    • 1
  • Josefina Priotti
    • 1
  • Hermínio P. Diogo
    • 2
  • Dario Leonardi
    • 1
  • Claudio J. Salomon
    • 1
  • Teresa G. Nunes
    • 2
  1. 1.IQUIR-CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Área Técnica FarmacéuticaUniversidad Nacional de RosarioRosarioArgentina
  2. 2.CQE, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal

Personalised recommendations