Skip to main content

Advertisement

Log in

Preparation and Evaluation of Progesterone Nanocrystals to Decrease Muscle Irritation and Improve Bioavailability

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Progesterone (PG) is a crucial immunomodulatory agent during early pregnancy, and nowadays PG oil-based injection (PG/OI) has a huge market all over the world. However, PG/OI may accumulate the local muscle and further cause irritations after long-term administration. In this study, PG nanocrystals (PG/NCs) injection was developed to decrease muscle toxicity. PG/NCs injection containing 10% (w/v) PG was first prepared using a wet grinding method. Then, particle size, zeta potential, morphology powder, X-ray diffraction (PXRD), differential scanning calorimetry (DSC), and Fourier transform infrared (FTIR) studies were carried out to evaluate the characteristics of dosage form. The rabbit muscle irritation, hemolysis, and rat pharmacokinetics tests were used to estimate the in vivo characteristics of PG/NCs. The results showed that the mean particle size and the zeta potentials of NCs were 299.5 ± 9.0 nm and − 36.8 ± 1.5 mV, respectively. The crystalline state of PG/NCs was not altered during particle size reduction according to PXRD, DSC, and FTIR results. Muscle irritation presented that PG/NCs had lower irritation than that of PG/OI. Hemolysis test suggested that PG/NCs injection was functioned without hemolysis and red cell agglutination. The pharmacokinetics study showed that the AUC0t and Cmax of PG/NCs was 3.2-fold (p < 0.05) and 3.1-fold higher than PG/OI, which demonstrated that PG/NCs injection had greater bioavailability than PG/OI. Therefore, it was obvious that PG/NCs injection exhibited a lower muscle irritation, hemolysis rate, and higher bioavailability, which was a better dosage form than OI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

PG:

progesterone

PG/NCs:

PG nanocrystals

PG/OI:

PG oil-based injection

References

  1. Blencowe H, Cousens S, Oestergaard MZ, Chou D, Moller AB, Narwal R, et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet. 2010;379:2162–72.

    Article  Google Scholar 

  2. Romero R. Vaginal progesterone to reduce the rate of preterm birth and neonatal morbidity: a solution at last. Womens Health (Lond). 2011;7(5):501–4. https://doi.org/10.2217/WHE.11.60.

    Article  Google Scholar 

  3. Csapo AI, Knobil E, van der Molen HJ, Wiest WG. Peripheral plasma progesterone levels during human pregnancy and labor. Am J Obstet Gynecol. 1971;110(5):630–2. https://doi.org/10.1016/0002-9378(71)90242-0.

    Article  CAS  PubMed  Google Scholar 

  4. Romero R, Yeo L, Chaemsaithong P, Chaiworapongsa T, Hassan SS. Progesterone to prevent spontaneous preterm birth. Semin Fetal Neonatal Med. 2014;9:15–26.

    Article  Google Scholar 

  5. Csapo AI, Pulkkinen MO, Ruttner B, Sauvage JP, Wiest WG. The significance of the human corpus luteum in pregnancy maintenance: I. Preliminary studies. Am J Obstet Gynecol. 1972;112(8):1061–7. https://doi.org/10.1016/0002-9378(72)90181-0.

    Article  CAS  PubMed  Google Scholar 

  6. Stites DP, Siiteri PK. Steroids as immunosuppressants in pregnancy. Immunol Rev. 1983;75(1):117–38. https://doi.org/10.1111/j.1600-065X.1983.tb01093.x.

    Article  CAS  PubMed  Google Scholar 

  7. Fidel PI Jr, Romero R, Maymon E, Hertelendy F. Bacteria-induced or bacterial product-induced preterm parturition in mice and rabbits is preceded by a significant fall in serum progesterone concentrations. J Matern Fetal Med. 1998;7:222–6.

    CAS  PubMed  Google Scholar 

  8. Mesiano S. Myometrial progesterone responsiveness and the control of human parturition. J Soc Gynecol Investig. 2004;11(4):193–202. https://doi.org/10.1016/j.jsgi.2003.12.004.

    Article  CAS  PubMed  Google Scholar 

  9. Abate A, Brigandi A, Abate FG, Manti F, Unfer V, Perino M. Luteal phase support with 17α-hydroxyprogesterone versus unsupported cycles in in vitro fertilization: a comparative randomized study. Gynecol Obstet Investig. 1999;48(2):78–80. https://doi.org/10.1159/000010143.

    Article  CAS  Google Scholar 

  10. Zarutskie PW, Phillips JAA. Meta-analysis of the route of administration of luteal phase support in assisted reproductive technology: vaginal versus intramuscular progesterone. Fertil Steril. 2009;92(1):163–9. https://doi.org/10.1016/j.fertnstert.2009.02.018.

    Article  CAS  PubMed  Google Scholar 

  11. Kahraman S, Karagozoglu SH, Karlikaya G. The efficiency of progesterone vaginal gel versus intramuscular progesterone for luteal phase supplementation in gonadotropin-releasing hormone antagonist cycles: a prospective clinical trial. Fertil Steril. 2010;94(2):761–3. https://doi.org/10.1016/j.fertnstert.2009.10.004.

    Article  CAS  PubMed  Google Scholar 

  12. Licciardi FL, Kwiatkowski A, Noyes NL, Berkeley AS, Krey LL, Grifo JA. Oral versus intramuscular progesterone for in vitro fertilization: a prospective randomized study. Fertil Steril. 1999;71(4):614–8. https://doi.org/10.1016/S0015-0282(98)00515-9.

    Article  CAS  PubMed  Google Scholar 

  13. Shapiro DB, Pappadakis JA, Ellsworth NM, Hait HI, Nagy ZP. Progesterone replacement with vaginal gel versus i.m. injection: cycle and pregnancy outcomes in IVF patients receiving vitrified blastocysts. Hum Reprod. 2014;29(8):1706–11. https://doi.org/10.1093/humrep/deu121.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Peeraer K, D'Hooghe T, Laurent P, Pelckmans S, Delvigne A, Laenen A, et al. Impact of luteal phase support with vaginal progesterone on the clinical pregnancy rate in intrauterine insemination cycles stimulated with gonadotropins: a randomized multicenter study. Fertil Steril. 2016;106(6):1490–5. https://doi.org/10.1016/j.fertnstert.2016.07.1096.

    Article  CAS  PubMed  Google Scholar 

  15. Fatemi HM. The luteal phase after 3 decades of IVF: what do we know? Reprod Biomed. 2009;19(Suppl 4):4331–44.

    Google Scholar 

  16. Keck CM, Müller RH. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur J Pharm Biopharm. 2006;62(1):3–16. https://doi.org/10.1016/j.ejpb.2005.05.009.

    Article  CAS  PubMed  Google Scholar 

  17. Mauludin R, Müller RH, Keck CM. Kinetic solubility and dissolution velocity of rutin nanocrystals. Eur J Pharm Sci. 2009;36(4-5):502–10. https://doi.org/10.1016/j.ejps.2008.12.002.

    Article  CAS  PubMed  Google Scholar 

  18. Merisko-Liversidge E, Liversidge GG, Cooper ER. Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur J Pharm Sci. 2003;18(2):113–20. https://doi.org/10.1016/S0928-0987(02)00251-8.

    Article  CAS  PubMed  Google Scholar 

  19. Muller RH, Keck CM. Challenges and solutions for the delivery of biotech drugs-a review of drug nanocrystal technology and lipid nanoparticles. J Biotechnol. 2004;113(1-3):151–70. https://doi.org/10.1016/j.jbiotec.2004.06.007.

    Article  CAS  PubMed  Google Scholar 

  20. Shi J, Guo F, Zheng AP, Zhang XY, Sun JX. Progress in the study of drug nanocrystals. Pharmazie. 2015;70(12):757–64.

    CAS  PubMed  Google Scholar 

  21. Nelson AA, Price CW, Welch H. Muscle irritation following the injection of various penicillin preparations in rabbits. J Am Pharm Assoc Am Pharm Assoc. 1949;38(5):237–9. https://doi.org/10.1002/jps.3030380502.

    Article  CAS  PubMed  Google Scholar 

  22. Almizraq RJ, Yi QL, Acker JP. Impact of technical and assay variation on reporting of hemolysis in stored red blood cell products. Clin Chim Acta. 2017;468:90–7. https://doi.org/10.1016/j.cca.2017.02.013.

    Article  CAS  PubMed  Google Scholar 

  23. Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J. 2008;22(3):659–61. https://doi.org/10.1096/fj.07-9574LSF.

    Article  CAS  PubMed  Google Scholar 

  24. Ma L, Ashworth D, Yates SR. Simultaneous determination of estrogens and progestogens in honey using high performance liquid chromatography-tandem mass spectrometry. J Pharm Biomed Anal. 2016;131:303–8. https://doi.org/10.1016/j.jpba.2016.09.001.

    Article  CAS  PubMed  Google Scholar 

  25. Gao L, Liu G, Ma J, Wang X, Zhou L, Li X. Drug nanocrystals: in vivo performances. J Control Release. 2012;160(3):418–30. https://doi.org/10.1016/j.jconrel.2012.03.013.

    Article  CAS  PubMed  Google Scholar 

  26. Liu F, Park JY, Zhang Y, Conwell C, Liu Y, Bathula SR, et al. Targeted cancer therapy with novel high drug loading nanocrystals. J Pharm Sci. 2010;99(8):3542–51. https://doi.org/10.1002/jps.22112.

    Article  CAS  PubMed  Google Scholar 

  27. Guan J, Zhang Y, Liu Q, Zhang X, Chokshi R, Mao S. Exploration of alginates as potential stabilizers of nanosuspension. AAPS PharmSciTech. 2017;18(8):3172–81. https://doi.org/10.1208/s12249-017-0801-6.

    Article  CAS  PubMed  Google Scholar 

  28. Rabinow BE. Nanosuspensions in drug delivery. Nat Rev Drug Discov. 2004;3(9):785–96. https://doi.org/10.1038/nrd1494.

    Article  CAS  PubMed  Google Scholar 

  29. Miao X, Li Y, Wang X, Lee SM, Zheng Y. Transport Mechanism of coumarin 6 nanocrystals with two particle sizes in MDCKII monolayer and larval zebrafish. ACS Appl Mater Interfaces. 2016;8(20):12620–30. https://doi.org/10.1021/acsami.6b01680.

    Article  CAS  PubMed  Google Scholar 

  30. Tuttle CB. Intramuscular injections and bioavailability. Am J Hosp Pharm. 1977;34(9):965–8.

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of China (grant numbers 81573357) and the Beijing Natural Science Foundation (grant numbers 7162148).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Li or Aiping Zheng.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Li Li and Wanqing Li are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Li, W., Sun, J. et al. Preparation and Evaluation of Progesterone Nanocrystals to Decrease Muscle Irritation and Improve Bioavailability. AAPS PharmSciTech 19, 1254–1263 (2018). https://doi.org/10.1208/s12249-017-0938-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-017-0938-3

KEY WORDS

Navigation