Skip to main content

Advertisement

Log in

Enhancement of Galantamine HBr Skin Permeation Using Sonophoresis and Limonene-Containing PEGylated Liposomes

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

This study aimed to investigate the effect of low-frequency sonophoresis (SN) and limonene-containing PEGylated liposomes (PL) on the transdermal delivery of galantamine HBr (GLT). To evaluate the skin penetration mechanism, confocal laser scanning microscopy (CLSM), Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC) were employed. The application of SN led to more GLT penetration into and through the skin than GLT solution alone. The liposomes also improved GLT permeation, and 2% limonene-containing PL (PL-LI2%) exhibited the highest GLT permeation, followed by PL-LI1%, PL-LI0.1%, and PL. The CLSM images of PL-LI2% resulted in the highest fluorescence intensity of fluorescent hydrophilic molecules in the deep skin layer, and the rhodamine PE-labeled liposome membrane was distributed in the intercellular region of the stratum corneum (SC). PL-LI2% induced significant changes in intercellular lipids in the SC, whereas SN had no effect on intercellular lipids of the SC. DSC thermograms showed that the greatest decrease in the lipid transition temperature occurred in PL-LI2%-treated SC. SN might improve drug permeation through an intracellular pathway, while limonene-containing liposomes play an important role in delivering GLT through an intercellular pathway by increasing the fluidity of intercellular lipids in the SC. Moreover, a small vesicle size and high membrane fluidity might enhance the transportation of intact vesicles through the skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Chol:

cholesterol

CLSM:

confocal laser scanning microscopy

DPH:

1,6-diphenyl-1,3,5-hexatriene

DSC:

differential scanning calorimetry

ED:

epidermis and dermis

EMA:

European Medicines Agency

FDA:

Food and Drug Administration

FTIR:

Fourier transform infrared spectroscopy

GLT:

galantamine HBr

NaFI:

sodium fluorescein

PC:

egg phosphatidylcholine

PEG2000-DSPE:

Na-salt N-(carbonyl-methoxypolyethylene glycol-2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine

PL:

PEGylated liposomes

PL-LI:

limonene-containing PEGylated liposomes

Rhodamine PE:

rhodamine B 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine triethylammonium salt

SC:

stratum corneum

SD:

standard deviation

SN:

sonophoresis

Tm:

transition midpoint temperature

References

  1. Tariot P. Current status and new developments with galantamine in the treatment of Alzheimer’s disease. Expert Opin Pharmacother. 2001;2(12):2027–49. https://doi.org/10.1517/14656566.2.12.2027.

    Article  CAS  PubMed  Google Scholar 

  2. Shytle RD, Mori T, Townsend K, Vendrame M, Sun N, Zeng J, et al. Cholinergic modulation of microglial activation by alpha 7 nicotinic receptors. J Neurochem. 2004;89(2):337–43. https://doi.org/10.1046/j.1471-4159.2004.02347.

  3. Heinrich M, Lee Teoh H. Galanthamine from snowdrop—the development of a modern drug against Alzheimer’s disease from local Caucasian knowledge. J Ethnopharmacol. 2004;92(2–3):147–62. https://doi.org/10.1016/j.jep.2004.02.012.

    Article  CAS  PubMed  Google Scholar 

  4. Turiiski VI, Krustev AD, Sirakov VN, Getova DP. In vivo and in vitro study of the influence of the anticholinesterase drug galantamine on motor and evacuative functions of rat gastrointestinal tract. Eur J Pharmacol. 2004;498(1–3):233–9. https://doi.org/10.1016/j.ejphar.2004.07.054.

    Article  CAS  PubMed  Google Scholar 

  5. Small G, Dubois B. A review of compliance to treatment in Alzheimer’s disease: potential benefits of a transdermal patch. Curr Med Res Opin. 2007;23(11):2705–13. https://doi.org/10.1185/030079907X233403.

    Article  CAS  PubMed  Google Scholar 

  6. Blume-Peytavi U, Massoudy L, Patzelt A, Lademann J, Dietz E, Rasulev U, et al. Follicular and percutaneous penetration pathways of topically applied minoxidil foam. Eur J Pharm Biopharm. 2010;76(3):450–3. https://doi.org/10.1016/j.ejpb.2010.06.010.

  7. Park C, Son D, Kim J, Oh T, Ha J, Rhee Y, et al. Investigation of formulation factors affecting in vitro and in vivo characteristics of a galantamine transdermal system. Int J Pharm. 2012;436(1–2):32–40. https://doi.org/10.1016/j.ijpharm.2012.06.057.

    Article  CAS  PubMed  Google Scholar 

  8. Barry BW. Novel mechanisms and devices to enable successful transdermal drug delivery. Eur J Pharm Sci. 2001;14(2):101–14. https://doi.org/10.1016/S0928-0987(01)00167-1.

    Article  CAS  PubMed  Google Scholar 

  9. Karande P, Mitragotri S. Enhancement of transdermal drug delivery via synergistic action of chemicals. BBA-Biomembranes. 2009;1788(11):2362–73. https://doi.org/10.1016/j.bbamem.2009.08.015.

    Article  CAS  PubMed  Google Scholar 

  10. Ibrahim SA, Li SK. Chemical enhancer solubility in human stratum corneum lipids and enhancer mechanism of action on stratum corneum lipid domain. Int J Pharm. 2010;383(1–2):89–98. https://doi.org/10.1016/j.ijpharm.2009.09.014.

    Article  CAS  PubMed  Google Scholar 

  11. Polat BE, Deen WM, Langer R, Blankschtein D. A physical mechanism to explain the delivery of chemical penetration enhancers into skin during transdermal sonophoresis—insight into the observed synergism. J Control Release. 2012;158(2):250–60. https://doi.org/10.1016/j.jconrel.2011.11.008.

    Article  CAS  PubMed  Google Scholar 

  12. Guo L, Chen J, Qiu Y, Zhang S, Xu B, Gao Y. Enhanced transcutaneous immunization via dissolving microneedle array loaded with liposome encapsulated antigen and adjuvant. Int J Pharm. 2013;447(1–2):22–30. https://doi.org/10.1016/j.ijpharm.2013.02.006.

    Article  CAS  PubMed  Google Scholar 

  13. Petchsangsai M, Rojanarata T, Opanasopit P, Ngawhirunpat T. The combination of microneedles with electroporation and sonophoresis to enhance hydrophilic macromolecule skin penetration. Biol Pharm Bull. 2014;37(8):1373–82. https://doi.org/10.1248/bpb.b14-00321.

    Article  CAS  PubMed  Google Scholar 

  14. Mutalik S, Parekh HS, Davies NM, Udupa N. A combined approach of chemical enhancers and sonophoresis for the transdermal delivery of tizanidine hydrochloride. Drug Deliv. 2009;16(2):82–91. https://doi.org/10.1080/10717540802605053.

    Article  CAS  PubMed  Google Scholar 

  15. Alvarez-Román R, Merino G, Kalia YN, Naik A, Guy RH. Skin permeability enhancement by low frequency sonophoresis: lipid extraction and transport pathways. J Pharm Sci. 2003;92(6):1138–46. https://doi.org/10.1002/jps.10370.

    Article  PubMed  Google Scholar 

  16. Rangsimawong W, Opanasopit P, Rojanarata T, Ngawhirunpat T. Mechanistic study of decreased skin penetration using a combination of sonophoresis with sodium fluorescein-loaded PEGylated liposomes with d-limonene. Int J Nanomedicine. 2015;10:7413–23. https://doi.org/10.2147/IJN.S96831.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Lopez R, Seto JE, Blankschtein D, Langer R. Enhancing the transdermal delivery of rigid nanoparticles using the simultaneous application of ultrasound and sodium lauryl sulfate. Biomaterials. 2011;32(3):933–41. https://doi.org/10.1016/j.biomaterials.2010.09.060.

    Article  CAS  PubMed  Google Scholar 

  18. Elsayed MMA, Abdallah OY, Naggar VF, Khalafallah NM. Deformable liposomes and ethosomes as carriers for skin delivery of ketotifen. Pharmazie. 2007;62(2):133–7.

    CAS  PubMed  Google Scholar 

  19. Rangsimawong W, Opanasopit P, Rojanarata T, Ngawhirunpat T. Terpene-containing PEGylated liposomes as transdermal carriers of a hydrophilic compound. Biol Pharm Bull. 2014;37(12):1936–43. https://doi.org/10.1248/bpb.b14-00535.

    Article  CAS  PubMed  Google Scholar 

  20. Marczak A. Fluorescence anisotropy of membrane fluidity probes in human erythrocytes incubated with anthracyclines and glutaraldehyde. Bioelectrochemistry. 2009;74(2):236–9. https://doi.org/10.1016/j.bioelechem.2008.11.004;.

    Article  CAS  PubMed  Google Scholar 

  21. Onuki Y, Hagiwara C, Sugibayashi K, Takayama K. Specific effect of polyunsaturated fatty acids on the cholesterol-poor membrane domain in a model membrane. Chem Pharm Bull. 2008;56(8):1103–9. https://doi.org/10.1248/cpb.56.1103.

    Article  CAS  PubMed  Google Scholar 

  22. Morgan CJ, Renwick AG, Friedmann PS. The role of stratum corneum and dermal microvascular perfusion in penetration and tissue levels of water-soluble drugs investigated by microdialysis. Br J Dermatol. 2003;148(3):434–43. https://doi.org/10.1046/j.1365-2133.2003.05163.

    Article  CAS  PubMed  Google Scholar 

  23. Imayama S, Ueda S, Isoda M. HIstologic changes in the skin of hairless mice following peeling with salicylic acid. Arch Dermatol. 2000;136(11):1390–5. https://doi.org/10.1001/archderm.136.11.1390.

    Article  CAS  PubMed  Google Scholar 

  24. Carrer DC, Vermehren C, Bagatolli LA. Pig skin structure and transdermal delivery of liposomes: a two photon microscopy study. J Control Release. 2008;132(1):12–20. https://doi.org/10.1016/j.jconrel.2008.08.006.

    Article  CAS  PubMed  Google Scholar 

  25. Boncheva M, Damien F, Normand V. Molecular organization of the lipid matrix in intact stratum corneum using ATR-FTIR spectroscopy. BBA-Biomembranes. 2008;1778(5):1344–55. https://doi.org/10.1016/j.bbamem.2008.01.022.

    Article  CAS  PubMed  Google Scholar 

  26. Obata Y, Utsumi S, Watanabe H, Suda M, Tokudome Y, Otsuka M, et al. Infrared spectroscopic study of lipid interaction in stratum corneum treated with transdermal absorption enhancers. Int J Pharm. 2010;389(1–2):18–23. https://doi.org/10.1016/j.ijpharm.2010.01.007.

    Article  CAS  PubMed  Google Scholar 

  27. Groen D, Poole DS, Gooris GS, Bouwstra JA. Is an orthorhombic lateral packing and a proper lamellar organization important for the skin barrier function? Biochim Biophys Acta. 2010;1808(6):1529–37. https://doi.org/10.1016/j.bbamem.2010.10.015.

    Article  PubMed  Google Scholar 

  28. Tanojo H, Bouwstra JA, Junginger HE, Boddé HE. Thermal analysis studies on human skin and skin barrier modulation by fatty acids and propylene glycol. J Therm Anal Calorim. 1999;57(1):313–22. https://doi.org/10.1023/A:1010137807610.

    Article  CAS  Google Scholar 

  29. Al-Saidan SM, Barry BW, Williams AC. Differential scanning calorimetry of human and animal stratum corneum membranes. Int J Pharm. 1998;168(1):17–22. https://doi.org/10.1016/S0378-5173(98)00078-7.

    Article  CAS  Google Scholar 

  30. Brief E, Kwak S, Cheng JT, Kitson N, Thewalt J, Lafleur M. Phase behavior of an equimolar mixture of N-palmitoyl-D-rythro-sphingosine, cholesterol, and palmitic acid, a mixture with optimized hydrophobic matching. Langmuir. 2009;25(13):7523–32. https://doi.org/10.1021/la9003643.

    Article  CAS  PubMed  Google Scholar 

  31. Hashida M, Yamashita F. Terpenes as penetration enhancers. In: Smith EW, Maibach HI, editors. Percutaneous penetration enhancers. New York: CRC Press LLC; 2000. p. 309–20.

    Google Scholar 

  32. Jain AK, Thomas N, Panchagnula R. Transdermal drug delivery of imipramine hydrochloride: I. Effect of terpenes. J Control Release. 2002;79(1–3):93–101. https://doi.org/10.1002/bdd.428.

    Article  CAS  PubMed  Google Scholar 

  33. Chain E, Kemp I. The isoelectric points of lecithin and sphingomyelin. Biochem J. 1934;28(6):2052–5. https://doi.org/10.1042/bj0282052.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Chonn A, Cullis PR. Recent advances in liposomal drug-delivery systems. Curr Opin Biotechnol. 1995;6(6):698–708. https://doi.org/10.1016/0958-1669(95)80115-4.

    Article  CAS  PubMed  Google Scholar 

  35. Jain S, Jain P, Umamaheshwari RB, Jain NK. Transfersomes—a novel vesicular carrier for enhanced transdermal delivery: development, characterization, and performance evaluation. Drug Dev Ind Pharm. 2003;29(9):1013–26. https://doi.org/10.1081/DDC-120025458.

    Article  CAS  PubMed  Google Scholar 

  36. Badran M, Shazly G, El-Badry M. Effect of terpene liposomes on the transdermal delivery of hydrophobic model drug, nimesulide: characterization, stability and in vitro skin permeation. Afr J Pharm Pharmacol. 2012;6(43):3018–26. https://doi.org/10.5897/AJPP12.552.

    Article  CAS  Google Scholar 

  37. Subongkot T, Ngawhirunpat T. Effect of liposomal fluidity on skin permeation of sodium fluorescein entrapped in liposomes. Int J Nanomedicine. 2015;10:4581–92. https://doi.org/10.2147/IJN.S86624.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Needham D, McIntosh TJ, Lasic DD. Repulsive interactions and mechanical stability of polymer-grafted lipid membranes. BBA-Biomembranes. 1992;1108(1):40–8. https://doi.org/10.1016/0005–2736(92)90112-Y.

    Article  CAS  PubMed  Google Scholar 

  39. Kang SN, Hong S, Kim S, Oh H, Lee M, Lim S. Enhancement of liposomal stability and cellular drug uptake by incorporating tributyrin into celecoxib-loaded liposomes. Asian J Pharmacol. 2013;8(2):128–33. https://doi.org/10.1016/j.ajps.2013.07.016.

    CAS  Google Scholar 

  40. Li C, Zhang Y, Su T, Feng L, Long Y, Chen Z. Silica-coated flexible liposomes as a nanohybrid delivery system for enhanced oral bioavailability of curcumin. Int J Nanomedicine. 2012;7:5995–6002. https://doi.org/10.2147/IJN.S38043.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Potts RO, Guy RH. Predicting skin permeability. Pharm Res. 1992;9(5):663–9. https://doi.org/10.1023/A:1015810312465.

    Article  CAS  PubMed  Google Scholar 

  42. Herwadkar A, Sachdeva V, Taylor LF, Silver H, Banga AK. Low frequency sonophoresis mediated transdermal and intradermal delivery of ketoprofen. Int J Pharm. 2012;423(2):289–96. https://doi.org/10.1016/j.ijpharm.2011.11.041.

    Article  CAS  PubMed  Google Scholar 

  43. Morimoto Y, Mutoh M, Ueda H, Fang L, Hirayama K, Atobe M, et al. Elucidation of the transport pathway in hairless rat skin enhanced by low-frequency sonophoresis based on the solute–water transport relationship and confocal microscopy. J Control Release. 2005;103(3):587–97. https://doi.org/10.1016/j.jconrel.2005.01.005.

  44. Ueda H, Mutoh M, Seki T, Kobayashi D, Morimoto Y. Acoustic cavitation as an enhancing mechanism of low-frequency sonophoresis for transdermal drug delivery. Biol Pharm Bull. 2009;32(5):916–20. https://doi.org/10.1248/bpb.32.916.

    Article  CAS  PubMed  Google Scholar 

  45. Quinn PJ, Wolf C. Thermotropic and structural evaluation of the interaction of natural sphingomyelins with cholesterol. BBA-Biomembranes. 2009;1788(9):1877–89. https://doi.org/10.1016/j.bbamem.2009.07.005.

    Article  CAS  PubMed  Google Scholar 

  46. Han T, Das DB. Potential of combined ultrasound and microneedles for enhanced transdermal drug permeation: A review. Eur J Pharm Biopharm. 2015;89:312–28. https://doi.org/10.1016/j.ejpb.2014.12.020.

    Article  CAS  PubMed  Google Scholar 

  47. Sarheed O, Abdul Rasool BK. Development of an optimised application protocol for sonophoretic transdermal delivery of a model hydrophilic drug. Open Biomed Eng J. 2011;5(1):14–24. https://doi.org/10.2174/1874120701105010014.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Rangsimawong W, Opanasopit P, Rojanarata T, Duangjit S, Ngawhirunpat T. Skin transport of hydrophilic compound-loaded PEGylated lipid nanocarriers: comparative study of liposomes, niosomes, and solid lipid nanoparticles. Biol Pharm Bull. 2016;39(8):1254–62. https://doi.org/10.1248/bpb.b15-00981.

    Article  CAS  PubMed  Google Scholar 

  49. Touitou E, Dayan N, Bergelson L, Godin B, Eliaz M. Ethosomes—novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J Control Release. 2000;65(3):403–18. https://doi.org/10.1016/S0168-3659(99)00222-9.

    Article  CAS  PubMed  Google Scholar 

  50. Benson HA. Transdermal drug delivery: penetration enhancement techniques. Curr Drug Deliv. 2005;2(1):23–33. https://doi.org/10.2174/1567201052772915.

    Article  CAS  PubMed  Google Scholar 

  51. Honeywell-Nguyen PL, Arenja S, Bouwstra JA. Skin penetration and mechanisms of action in the delivery of the D2-agonist rotigotine from surfactant-based elastic vesicle formulations. Pharm Res. 2003;20(10):1619–25. https://doi.org/10.1023/A:1026191402557.

    Article  CAS  PubMed  Google Scholar 

  52. Dragicevic-Curic N, Scheglmann D, Albrecht V, Fahr A. Temoporfin-loaded invasomes: development, characterization and in vitro skin penetration studies. J Control Release. 2008;127(1):59–69. https://doi.org/10.1016/j.jconrel.2007.12.013.

    Article  CAS  PubMed  Google Scholar 

  53. Hatta I, Nakazawa H, Obata Y, Ohta N, Inoue K, Yagi N. Novel method to observe subtle structural modulation of stratum corneum on applying chemical agents. Chem Phys Lipids. 2010;163(4–5):381–9. https://doi.org/10.1016/j.chemphyslip.2010.02.005.

    Article  CAS  PubMed  Google Scholar 

  54. Kim YW, Kim MJ, Chung BY, du Bang Y, Lim SK, Choi SM, et al. Safety evaluation and risk assessment of d-limonene. J Toxicol Environ Health B Crit Rev. 2013;16(1):17–38. https://doi.org/10.1080/10937404.2013.769418.

    Article  CAS  PubMed  Google Scholar 

  55. Honeywell-Nguyen PL, de Graaff AM, Groenink HW, Bouwstra JA. The in vivo and in vitro interactions of elastic and rigid vesicles with human skin. Biochim Biophys Acta. 2002;1573(2):130–40. https://doi.org/10.1016/S0304-4165(02)00415-4.

    Article  CAS  PubMed  Google Scholar 

  56. Cevc G, Blume G. Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. BBA-Biomembranes. 1992;1104(1):226–32. https://doi.org/10.1016/0005–2736(92)90154-E.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

We gratefully acknowledge the Thailand Research Funds through the Royal Golden Jubilee PhD Program (Grant No. PHD/0091/2554) for the financial support and thank for the Faculty of Pharmacy and Graduate School, Silpakorn University, Nakhon Pathom, Thailand and Department of Pharmaceutics, Hoshi University, Tokyo, Japan for all facilities and support. This work was supported by the MEXT-Supported Program for the Strategic Research Foundation at Private University, 2014-2018, S1411019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Worranan Rangsimawong.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rangsimawong, W., Obata, Y., Opanasopit, P. et al. Enhancement of Galantamine HBr Skin Permeation Using Sonophoresis and Limonene-Containing PEGylated Liposomes. AAPS PharmSciTech 19, 1093–1104 (2018). https://doi.org/10.1208/s12249-017-0921-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-017-0921-z

KEY WORDS

Navigation