Skip to main content

Advertisement

Log in

Nanolipid Gel of an Antimycotic Drug for Treating Vulvovaginal Candidiasis—Development and Evaluation

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

This paper focuses on the development and evaluation of mucoadhesive vaginal gel of fluconazole using nanolipid carriers to enhance tissue deposition in treating vulvovaginal candidiasis. Treatment of vulvovaginal candidiasis includes antimycotic agents prescribed for 1 to 7 days or longer, in relapse either orally or topically. The delivery of fluconazole as nanolipid carriers in vaginal gel can be proposed as suitable alternative to the existing conventional formulations to improve the patient acceptability, compliance and localized drug action. The nanolipid carriers of fluconazole were prepared by phase inversion temperature technique and incorporated into Carbopol 974P as gelling polymer. GRAS excipients selected and optimized were Precirol ATO 5, oleic acid and Kolliphor RH 40 to produce nanolipid dispersions. Stable nanolipid dispersions were developed using sodium dodecyl sulfate as the charge inducer. The optimized nanolipid dispersion of fluconazole had particle size, polydispersity index and zeta potential value of 158.33 ± 2.55 nm, 0.278 ± 0.003 and − 27.33 ± 0.40 mV, respectively and the average entrapment of fluconazole in the lipid carriers was found to be 67.24 ± 0.87%. The optimized vaginal gel had satisfactory mucoadhesive strength and rheological properties to facilitate vaginal application. The fluconazole release from the gel was sustained showing 30.69 ± 1.02% drug deposition in the porcine vaginal mucosa at the end of 8 h with improved antifungal activity against Candida albicans during well diffusion studies. The optimized gel was non-irritant to the vaginal mucosa of female Wistar rats with no signs of erythema or edema.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mashburn J. Vaginal infections update. J Midwifery Womens Health. 2012;57(6):629–34. https://doi.org/10.1111/j.1542-2011.2012.00246.x.

    Article  PubMed  Google Scholar 

  2. Sobel JD, Faro S, Force RW, Foxman B, Ledger WJ, Nyirjesy PR, et al. Vulvovaginal candidiasis: epidemiologic, diagnostic, and therapeutic considerations. Am J Obstet Gynecol. 1998;178(2):203–11. https://doi.org/10.1016/S0002-9378(98)80001-X.

    Article  CAS  PubMed  Google Scholar 

  3. Spampinato C, Leonardi D. Candida infections, causes, targets, and resistance mechanisms: traditional and alternative antifungal agents. Biomed Res Int. 2013;2013:1–13. https://doi.org/10.1155/2013/204237.

    Google Scholar 

  4. Valenta C. The use of mucoadhesive polymers in vaginal delivery. Adv Drug Deliv Rev. 2005;57(11):1692–712. https://doi.org/10.1016/j.addr.2005.07.004.

    Article  CAS  PubMed  Google Scholar 

  5. Barua S, Mitragotri S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current status and future prospects. Nano Today. 2014;9(2):223–43. https://doi.org/10.1016/j.nantod.2014.04.008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Patravale V, Dandekar P, Jain R. Nanoparticulate drug delivery: perspectives on the transition from laboratory to market; Elsevier 2012, DOI: https://doi.org/10.1533/9781908818195.

  7. Natarajan JV, Nugraha C, Ng XW, Venkatraman S. Sustained-release from nanocarriers: a review. J Control Release. 2014;193:122–38. https://doi.org/10.1016/j.jconrel.2014.05.029.

    Article  CAS  PubMed  Google Scholar 

  8. Ensign LM, Cone R, Hanes J. Nanoparticle-based drug delivery to the vagina: a review. J Control Release. 2014;190:500–14. https://doi.org/10.1016/j.jconrel.2014.04.033.

    Article  CAS  PubMed  Google Scholar 

  9. Shidhaye S, Vaidya R, Sutar S, Patwardhan A, Kadam V. Solid lipid nanoparticles and nanostructured lipid carriers-innovative generations of solid lipid carriers. Curr Drug Deliv. 2008;5(4):324–31. https://doi.org/10.2174/156720108785915087.

    Article  CAS  PubMed  Google Scholar 

  10. de Araújo Pereira RR, Bruschi ML. Vaginal mucoadhesive drug delivery systems. Drug Dev Ind Pharm. 2012;38(6):643–52. https://doi.org/10.3109/03639045.2011.623355.

    Article  PubMed  Google Scholar 

  11. Das Neves J, Bahia M. Gels as vaginal drug delivery systems. Int J Pharm. 2006;318(1):1–14. https://doi.org/10.1016/j.ijpharm.2006.03.012.

    Article  CAS  PubMed  Google Scholar 

  12. Vanić Ž, Škalko-Basnet N. Nanopharmaceuticals for improved topical vaginal therapy: can they deliver? Eur J Pharm Sci. 2013;50(1):29–41. https://doi.org/10.1016/j.ejps.2013.04.035.

    Article  PubMed  Google Scholar 

  13. Goodman LS. Goodman and Gilman’s the pharmacological basis of therapeutics. New York: McGraw-Hill; 1996.

    Google Scholar 

  14. Faro S. Systemic vs. topical therapy for the treatment of vulvovaginal candidiasis. Infect Dis Obstet Gynecol. 1994;1(4):202–8. https://doi.org/10.1155/S1064744994000098.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Shen H, Zhong M. Preparation and evaluation of self-microemulsifying drug delivery systems (SMEDDS) containing atorvastatin. J Pharm Pharmacol. 2006;58(9):1183–91. https://doi.org/10.1211/jpp.58.9.0004.

    Article  CAS  PubMed  Google Scholar 

  16. Joshi M, Patravale V. Nanostructured lipid carrier (NLC) based gel of celecoxib. Int J Pharm. 2008;346(1):124–32. https://doi.org/10.1016/j.ijpharm.2007.05.060.

    Article  CAS  PubMed  Google Scholar 

  17. Tamjidi F, Shahedi M, Varshosaz J, Nasirpour A. Nanostructured lipid carriers (NLC): a potential delivery system for bioactive food molecules. Innovative Food Sci Emerg Technol. 2013;19:29–43. https://doi.org/10.1016/j.ifset.2013.03.002.

    Article  CAS  Google Scholar 

  18. Kaur S, Nautyal U, Singh R, Singh S, Devi A. Nanostructure lipid carrier (NLC): the new generation of lipid nanoparticles. Asian Pac J Health Sci. 2015;2:76–93.

    Google Scholar 

  19. Sanad RA, AbdelMalak NS, Badawi AA. Formulation of a novel oxybenzone-loaded nanostructured lipid carriers (NLCs). AAPS PharmSciTech. 2010;11(4):1684–94. https://doi.org/10.1208/s12249-010-9553-2.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Gupta M, Vyas SP. Development, characterization and in vivo assessment of effective lipidic nanoparticles for dermal delivery of fluconazole against cutaneous candidiasis. Chem Phys Lipids. 2012;165(4):454–61. https://doi.org/10.1016/j.chemphyslip.2012.01.006.

    Article  CAS  PubMed  Google Scholar 

  21. Sharma R, Kaur G, Kapoor DN. Fluconazole loaded cubosomal vesicles for topical delivery. Int J Drug Dev Res. 2015;7(1):32–41.

    Google Scholar 

  22. Han F, Yin R, Che X, Yuan J, Cui Y, Yin H, et al. Nanostructured lipid carriers (NLC) based topical gel of flurbiprofen: design, characterization and in vivo evaluation. Int J Pharm. 2012;439(1):349–57. https://doi.org/10.1016/j.ijpharm.2012.08.040.

    Article  CAS  PubMed  Google Scholar 

  23. Aher ND, Nair HA. Bilayered films based on novel polymer derivative for improved ocular therapy of gatifloxacin. Sci World J. 2014;2014:1–9. https://doi.org/10.1155/2014/297603.

    Article  Google Scholar 

  24. Bachhav YG, Patravale VB. Microemulsion based vaginal gel of fluconazole: formulation, in vitro and in vivo evaluation. Int J Pharm. 2009;365(1):175–9. https://doi.org/10.1016/j.ijpharm.2008.08.021.

    Article  CAS  PubMed  Google Scholar 

  25. Khurana S, Jain N, Bedi P. Nanoemulsion based gel for transdermal delivery of meloxicam: physico-chemical, mechanistic investigation. Life Sci. 2013;92(6):383–92. https://doi.org/10.1016/j.lfs.2013.01.005.

    Article  CAS  PubMed  Google Scholar 

  26. Khullar R, Kumar D, Seth N, Saini S. Formulation and evaluation of mefenamic acid emulgel for topical delivery. Saudi Pharm J. 2012;20(1):63–7. https://doi.org/10.1016/j.jsps.2011.08.001.

    Article  PubMed  Google Scholar 

  27. Fang J-Y, Fang C-L, Liu C-H, Su Y-H. Lipid nanoparticles as vehicles for topical psoralen delivery: solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC). Eur J Pharm Biopharm. 2008;70(2):633–40. https://doi.org/10.1016/j.ejpb.2008.05.008.

    Article  CAS  PubMed  Google Scholar 

  28. Cirri M, Bragagni M, Mennini N, Mura P. Development of a new delivery system consisting in “drug–in cyclodextrin–in nanostructured lipid carriers” for ketoprofen topical delivery. Eur J Pharm Biopharm. 2012;80(1):46–53. https://doi.org/10.1016/j.ejpb.2011.07.015.

    Article  CAS  PubMed  Google Scholar 

  29. Squier CA, Mantz MJ, Schlievert PM, Davis CC. Porcine vagina ex vivo as a model for studying permeability and pathogenesis in mucosa. J Pharm Sci. 2008;97(1):9–21. https://doi.org/10.1002/jps.21077.

    Article  CAS  PubMed  Google Scholar 

  30. Martín-Villena M, Fernández-Campos F, Calpena-Campmany A, Bozal-de Febrer N, Ruiz-Martínez M, Clares-Naveros B. Novel microparticulate systems for the vaginal delivery of nystatin: development and characterization. Carbohydr Polym. 2013;94(1):1–11. https://doi.org/10.1016/j.carbpol.2013.01.005.

    Article  PubMed  Google Scholar 

  31. Wavikar P, Vavia P. Nanolipidgel for enhanced skin deposition and improved antifungal activity. AAPS PharmSciTech. 2013;14(1):222–33. https://doi.org/10.1208/s12249-012-9908-y.

    Article  CAS  PubMed  Google Scholar 

  32. Mendes A, Silva A, Catita J, Cerqueira F, Gabriel C, Lopes C. Miconazole-loaded nanostructured lipid carriers (NLC) for local delivery to the oral mucosa: improving antifungal activity. Colloids Surf B: Biointerfaces. 2013;111:755–63. https://doi.org/10.1016/j.colsurfb.2013.05.041.

    Article  CAS  PubMed  Google Scholar 

  33. Bassi P, Kaur G. Bioadhesive vaginal drug delivery of nystatin using a derivatized polymer: development and characterization. Eur J Pharm Biopharm. 2015;96:173–84. https://doi.org/10.1016/j.ejpb.2015.07.018.

    Article  CAS  PubMed  Google Scholar 

  34. Kumar L, Reddy M, Shirodkar R, Pai G, Krishna V, Verma R. Preparation and characterisation of fluconazole vaginal films for the treatment of vaginal candidiasis. Indian J Pharm Sci. 2013;75(5):585–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Deshkar SS, Patil AT. Development of mucoadhesive gel of fluconazole for vaginal candidiasis. Indo Am J Pharm Res. 2015;5(11):3599–610.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge Glenmark Research Center (Taloja, India), Gattefosse India Pvt. Ltd (Mumbai, India), Signet Chemical Corporation (Mumbai, India), Cremer Oleodivison (Germany), Nikkol (Japan), Abitec Corporation (USA) and Lubrizol (India) for providing the gift samples of drug and excipients.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Namita Desai.

Ethics declarations

The experimental protocol for the study was approved by the Animal Ethics Committee of Mumbai Veterinary College (MVC/IAEC/12/2016).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takalkar, D., Desai, N. Nanolipid Gel of an Antimycotic Drug for Treating Vulvovaginal Candidiasis—Development and Evaluation. AAPS PharmSciTech 19, 1297–1307 (2018). https://doi.org/10.1208/s12249-017-0918-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-017-0918-7

KEY WORDS

Navigation