Skip to main content

Advertisement

Log in

Photostability Issues in Pharmaceutical Dosage Forms and Photostabilization

  • Mini-Review
  • Theme: Stability of Pharmaceutical Excipients
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Photodegradation is one of the major pathways of the degradation of drugs. Some therapeutic agents and excipients are highly sensitive to light and undergo significant degradation, challenging the quality and the stability of the final product. The adequate knowledge of photodegradation mechanisms and kinetics of photosensitive therapeutic entities or excipients is a pivotal aspect in the product development phase. Hence, various pharmaceutical regulatory agencies, across the world, mandated the industries to assess the photodegradation of pharmaceutical products from manufacturing stage till storage, as per the guidelines given in the International Conference on Harmonization (ICH). Recently, numerous formulation and/or manufacturing strategies has been investigated for preventing the photodegradation and enhancing the photostability of photolabile components in the pharmaceutical dosage forms. The primary focus of this review is to discuss various photodegradation mechanisms, rate kinetics, and the factors that influence the rate of photodegradation. We also discuss light-induced degradation of photosensitive lipids and polymers. We conclude with a brief note on different approaches to improve the photostability of photosensitive products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Guideline IHT. Stability testing: photostability testing of new drug substances and products. Q1B, Current Step. 1996;4.

  2. Allain L, Baertschi SW, Clapham D, Foti C, Lantaff WM, Reed RA, et al. Implications of in-use photostability: proposed guidance for photostability testing and labeling to support the administration of photosensitive pharmaceutical products, part 3: oral drug products. J Pharm Sci. 2016;105(5):1586–94.

    Article  CAS  PubMed  Google Scholar 

  3. Alsante KM, Huynh-Ba KC, Baertschi SW, Reed RA, Landis MS, Furness S, et al. Recent trends in product development and regulatory issues on impurities in active pharmaceutical ingredient (API) and drug products. Part 2: safety considerations of impurities in pharmaceutical products and surveying the impurity landscape. AAPS PharmSciTech. 2014;15(1):237–51.

    Article  PubMed  Google Scholar 

  4. Baertschi SW, Alsante KM, Tønnesen HH. A critical assessment of the ICH guideline on photostability testing of new drug substances and products (Q1B): recommendation for revision. J Pharm Sci. 2010;99(7):2934–40.

    Article  CAS  PubMed  Google Scholar 

  5. Baertschi SW, Clapham D, Foti C, Jansen PJ, Kristensen S, Reed RA, et al. Implications of in-use photostability: proposed guidance for photostability testing and labeling to support the administration of photosensitive pharmaceutical products, part 1: drug products administered by injection. J Pharm Sci. 2013;102(11):3888–99.

    Article  CAS  PubMed  Google Scholar 

  6. Baertschi SW, Clapham D, Foti C, Kleinman MH, Kristensen S, Reed RA, et al. Implications of in-use photostability: proposed guidance for photostability testing and labeling to support the administration of photosensitive pharmaceutical products, part 2: topical drug product. J Pharm Sci. 2015;104(9):2688–701.

    Article  CAS  PubMed  Google Scholar 

  7. Zhifeng L. Study on the photochemical degradation of petroleum in seawater [Doctoral Dissertation], Ocean University of China; 2008.

  8. Chen C, Zhao Q, Feng L, Zhang LQ. Photodegradation performance and mechanisms of carbamazepine and its impact factors. Huan Jing Ke Xue. 2012;33(12):4340–5.

    CAS  PubMed  Google Scholar 

  9. Onoue S, Tsuda Y. Analytical studies on the prediction of photosensitive/phototoxic potential of pharmaceutical substances. Pharm Res. 2006;23(1):156–64.

    Article  CAS  PubMed  Google Scholar 

  10. Piechocki JT, Thoma K. Pharmaceutical photostability and stabilization technology, vol 163. CRC Press; 2006.

  11. Kim I, Yamashita N, Tanaka H. Photodegradation of pharmaceuticals and personal care products during UV and UV/H2O2 treatments. Chemosphere. 2009;77(4):518–25.

    Article  CAS  PubMed  Google Scholar 

  12. Xuexiang H, Yong C, Yulun N, Chun H. Photodegradation of tetracyclines compound in aqueous solution under different light irradiation. Chin J Chem Eng. 2012;6(8):2465–9.

    Google Scholar 

  13. Ding Weiming LM, Guiling L, Guimin X. Study of the photodegradation kinetics of geldanamycin solution. Chin J Pharm Anal. 2007;6:867–9.

    Google Scholar 

  14. Ahmad I, Fasihullah Q, Vaid FH. Effect of light intensity and wavelengths on photodegradation reactions of riboflavin in aqueous solution. J Photochem Photobiol B. 2006;82(1):21–7.

    Article  CAS  PubMed  Google Scholar 

  15. Nord K, Karlsen J, Tønnesen HH. Photochemical stability of biologically active compounds. IV. Photochemical degradation of chloroquine. Int J Pharm. 1991;72(1):11–8.

    Article  CAS  Google Scholar 

  16. Zhu Xiangdong WY, Ruijuan S, Dongmei Z. Effect of solution acidity on the photo degradation and photocatalytic degradation rate of tetracycline. J Ecol Rural Environ. 2012;28(6):742–5.

    Google Scholar 

  17. Yang Kai GL, Na G, Yao Z, Zhao Y. Photochemical behavior of water oxazolidinone antibiotic linezolid. Chin Sci Bull. 2012;26:2469–74.

    Article  Google Scholar 

  18. Xian Jian LL, Shichun Z. Study on the water environment in the photodegradation of antibiotics erythromycin and roxithromycin. Guangzhou Chem. 2012;33(2):1–5.

    Google Scholar 

  19. Carp O, Huisman CL, Reller A. Photoinduced reactivity of titanium dioxide. Prog Solid State Chem. 2004;32(1):33–177.

    Article  CAS  Google Scholar 

  20. Gaya UI, Abdullah AH, Zainal Z, Hussein MZ. Photocatalytic treatment of 4-chlorophenol in aqueous ZnO suspensions: intermediates, influence of dosage and inorganic anions. J Hazard Mater. 2009;168(1):57–63.

    Article  CAS  PubMed  Google Scholar 

  21. Albani A,Fasani E. Drugs: photochemistry and photostability. R Soc Chem 1998.

  22. Torniainen K, Tammilehto S, Ulvi V. The effect of pH, buffer type and drug concentration on photodegradation of ciprofloxacin. Int J Pharm. 1996;132(1):53–61.

    Article  CAS  Google Scholar 

  23. Bhalekar MR, Harinarayana D, Madgulkar AR, Pandya SJ, Jain DK. Improvement of photostability in formulation: a review. Asian J Chem. 2008;20(7):5095.

    CAS  Google Scholar 

  24. Chong MN, Jin B, Chow CW, Saint C. Recent developments in photocatalytic water treatment technology: a review. Water Res. 2010;44(10):2997–3027.

    Article  CAS  PubMed  Google Scholar 

  25. Gogate PR, Pandit AB. A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv Environ Res. 2004;8(3):501–51.

    Article  CAS  Google Scholar 

  26. Bhatkhande DS, Pangarkar VG, Beenackers AA. Photocatalytic degradation of nitrobenzene using titanium dioxide and concentrated solar radiation: chemical effects and scaleup. Water Res. 2003;37(6):1223–30.

    Article  CAS  PubMed  Google Scholar 

  27. Ahmad I, Ahmed S, Anwar Z, Sheraz MA, Sikorski M. Photostability and photostabilization of drugs and drug products. Int J Photoenergy. 2016:1–19.

  28. Fasani E, Profumo A, Albini A. Structure and medium-dependent photodecomposition of fluoroquinolone antibiotics. Photochem Photobiol. 1998;68(5):666–74.

    Article  CAS  PubMed  Google Scholar 

  29. Insińska-Rak M, Sikorski M. Riboflavin interactions with oxygen—a survey from the photochemical perspective. Chem Eur J. 2014;20(47):15280–91.

    Article  PubMed  Google Scholar 

  30. Iwaoka T, Kondo M. Mechanistic studies on the photooxidation of chlorpromazine in water and ethanol. Bull Chem Soc Jpn. 1974;47(4):980–6.

    Article  CAS  Google Scholar 

  31. Moore DE, Fallon MP, Burt CD. Photo-oxidation of tetracycline—a differential pulse polarographic study. Int J Pharm. 1983;14(2–3):133–42.

    Article  CAS  Google Scholar 

  32. Zafiriou OC, True MB. Nitrite photolysis in seawater by sunlight. Mar Chem. 1979;8(1):9–32.

    Article  CAS  Google Scholar 

  33. Strickler S, Kasha M. Solvent effects on the electronic absorption spectrum of nitrite ion. J Am Chem Soc. 1963;85(19):2899–901.

    Article  CAS  Google Scholar 

  34. Rotlevi E, Treinin A. The 300-mμ band of NO3. J Phys Chem. 1965;69(8):2645–8.

    Article  CAS  Google Scholar 

  35. Maria H, McDonald J, McGlynn S. Electronic absorption spectrum of nitrate ion and boron trihalides. J Am Chem Soc. 1973;95(4):1050–6.

    Article  CAS  Google Scholar 

  36. Tonnesen HH. Photostability of drugs and drug formulations. CRC Press; 2004.

  37. Tønnesen HH. Formulation and stability testing of photolabile drugs. Int J Pharm. 2001;225(1):1–14.

    Article  PubMed  Google Scholar 

  38. Devleeschouwer V, Roelandts R, Garmyn M, Goossens A. Allergic and photoallergic contact dermatitis from ketoprofen: results of (photo) patch testing and follow-up of 42 patients. Contact Dermatitis. 2008;58:159–66.

    Article  CAS  PubMed  Google Scholar 

  39. Ahmad I, Sheraz MA, Ahmed S, Shaikh RH, Vaid FH, ur Rehman Khattak S, et al. Photostability and interaction of ascorbic acid in cream formulations. AAPS PharmSciTech. 2011;12(3):917–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nowakowska M. Reaction of singlet oxygen with styrene-butadiene copolymer: 1. 9-Methylanthracene photo-sensitized oxidation of styrene-butadiene copolymer. Polym Degrad Stab. 1985;12(1):13–21.

    Article  CAS  Google Scholar 

  41. Gröllmann U, Schnabel W. Free radical-induced oxidative degradation of polyacrylamide in aqueous solution. Polym Degrad Stab. 1982;4(3):203–12.

    Article  Google Scholar 

  42. Yousif E, Haddad R. Photodegradation and photostabilization of polymers, especially polystyrene: review. SpringerPlus. 2013;2(1):1.

    Article  CAS  Google Scholar 

  43. Budai M, Gróf P, Zimmer A, Pápai K, Klebovich I, Ludányi K. UV light induced photodegradation of liposome encapsulated fluoroquinolones: an MS study. J Photochem Photobiol A Chem. 2008;198(2):268–73.

    Article  CAS  Google Scholar 

  44. Budai M, Szabó Z, Zimmer A, Szögyi M, Gróf P. Studies on molecular interactions between nalidixic acid and liposomes. Int J Pharm. 2004;279(1):67–79.

    Article  CAS  PubMed  Google Scholar 

  45. Martinez LJ, Sik RH, Chignell CF. Fluoroquinolone antimicrobials: singlet oxygen, superoxide and phototoxicity. Photochem Photobiol. 1998;67(4):399–403.

    Article  CAS  PubMed  Google Scholar 

  46. Sharma A, Sharma US. Liposomes in drug delivery: progress and limitations. Int J Pharm. 1997;154(2):123–40.

    Article  CAS  Google Scholar 

  47. Fresta M, Guccione S, Beccari AR, Furneri PM, Puglisi G. Combining molecular modeling with experimental methodologies: mechanism of membrane permeation and accumulation of ofloxacin. Bioorg Med Chem. 2002;10(12):3871–89.

    Article  CAS  PubMed  Google Scholar 

  48. Tiburcio-Moreno J, Marcelín-Jiménez G, Leanos-Castaneda O, Yanez-Limon J, Alvarado-Gil J. Study of the Photodegradation process of vitamin E acetate by optical absorption, fluorescence, and thermal lens spectroscopy. Int J Thermophys. 2012;33(10–11):2062–8.

    Article  CAS  Google Scholar 

  49. Kerwin BA, Remmele RL. Protect from light: photodegradation and protein biologics. J Pharm Sci. 2007;96(6):1468–79.

    Article  CAS  PubMed  Google Scholar 

  50. Chang SH, Teshima GM, Milby T, Gillece-Castro B, Canova-Davis E. Metal-catalyzed photooxidation of histidine in human growth hormone. Anal Biochem. 1997;244:221–7.

    Article  CAS  PubMed  Google Scholar 

  51. Hageman MJ, Bauer JM, Possert PL, Darrington RT. Preformulation studies oriented towards sustained delivery of recombinant somatotropins. J Agric Food Chem. 1992;40:348–55.

    Article  CAS  Google Scholar 

  52. Parti R, Ardosa J, Yang L, Mankarious S. In vitro stability of recombinant human factor VIII (recombinate). Haemophilia. 2000;6:513–22.

    Article  CAS  PubMed  Google Scholar 

  53. Shen X, Pang SZ, Ma HG. Flash photolysis study of insulin. Sci Sin B. 1984;27:361–70.

    CAS  PubMed  Google Scholar 

  54. Katagi T. Photodegradation of esfenvalerate in clay suspensions. J Agric Food Chem. 1993;41(11):2178–83.

    Article  CAS  Google Scholar 

  55. Kelly M. Shileds PD. Drug-induced photosensitivity. Pharmacist’s letter/prescriber’s letter 2004; http://www.wellnesspharmacy.net/photosensitivity.pdf.

  56. Bouwman Y, Le Brun P. Practical pharmaceutics: an international guideline for the preparation, care and use of medicinal products. Springer; 2015.

  57. Manconi M, Valenti D, Sinico C, Lai F, Loy G, Fadda AM. Niosomes as carriers for tretinoin: II. Influence of vesicular incorporation on tretinoin photostability. Int J Pharm. 2003;260(2):261–72.

    Article  CAS  PubMed  Google Scholar 

  58. Habib M, Asker A. Photostabilization of riboflavin by incorporation into liposomes. PDA J Pharm Sci Technol. 1991;45(3):124–7.

    CAS  Google Scholar 

  59. Bandak S, Ramu A, Barenholz Y, Gabizon A. Reduced UV-induced degradation of doxorubicin encapsulated in polyethyleneglycol-coated liposomes. Pharm Res. 1999;16(6):841–6.

    Article  CAS  PubMed  Google Scholar 

  60. Ioele G, Tavano L, De Luca M, Ragno G, Picci N, Muzzalupo R. Photostability and ex-vivo permeation studies on diclofenac in topical niosomal formulations. Int J Pharm. 2015;494(1):490–7.

    Article  CAS  PubMed  Google Scholar 

  61. Carlotti ME, Sapino S, Peira E, Gallarate M, Ugazio E. On the photodegradation of dithranol in different topical formulations: use of SLN to increase the stability of the drug. J Dispers Sci Technol. 2009;30(10):1517–24.

    Article  CAS  Google Scholar 

  62. Demchak R, Dybas R. Photostability of abamectin/zein microspheres. J Agric Food Chem. 1997;45(1):260–2.

    Article  CAS  Google Scholar 

  63. Tursilli R, Casolari A, Iannuccelli V, Scalia S. Enhancement of melatonin photostability by encapsulation in lipospheres. J Pharm Biomed Anal. 2006;40(4):910–4.

    Article  CAS  PubMed  Google Scholar 

  64. Pecora TM, Cianciolo S, Catalfo A, et al. Preparation, characterization and photostability assessment of curcumin microencapsulated within methacrylic copolymers. J Dispers Sci Technol. 2016;33:88–97.

    CAS  Google Scholar 

  65. Ahmad I, Ahmed S, Sheraz MA, Aminuddin M, Vaid FHM. Effect of caffeine complexation on the photolysis of riboflavin in aqueous solution: a kinetic study. Chem Pharm Bull. 2009;57(12):1363–70.

    Article  CAS  PubMed  Google Scholar 

  66. Kogawa AC, Zoppi A, Quevedo MA, Salgado HRN, Longhi MR. Increasing doxycycline hyclate photostability by complexation with β-cyclodextrin. AAPS PharmSciTech. 2014;15(5):1209–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kfoury M, Sahraoui AL-H, Bourdon N, Laruelle F, Fontaine J, Auezova L, et al. Solubility, photostability and antifungal activity of phenylpropanoids encapsulated in cyclodextrins. Food Chem. 2016;196:518–25.

    Article  CAS  PubMed  Google Scholar 

  68. Ilić-Stojanović SS, Nikolić VD, Nikolić LB, Zdravković AS, Kapor AJ, Popsavin MM, et al. The improved photostability of naproxen in the inclusion complex with 2-hydroxypropyl-β-cyclodextrin. Hem Ind. 2015;69(4):361–70.

    Article  Google Scholar 

  69. Bayomi MA, Abanumay KA, Al-Angary AA. Effect of inclusion complexation with cyclodextrins on photostability of nifedipine in solid state. Int J Pharm. 2002;243(1):107–17.

    Article  CAS  PubMed  Google Scholar 

  70. Rivas-Granizo PE, Giorgetti L, Ferraz HG. Photostability of loratadine inclusion complexes with natural cyclodextrins. Int J Photoenergy. 2015:1–6.

  71. Mielcarek J, Daczkowska E. Photodegradation of inclusion complexes of isradipine with methyl-β-cyclodextrin. J Pharm Biomed Anal. 1999;21(2):393–8.

    Article  CAS  PubMed  Google Scholar 

  72. Ioele G, De Luca M, Ragno G. Photostability of barnidipine in combined cyclodextrin-in-liposome matrices. Future Med Chem. 2014;6(1):35–43.

    Article  CAS  PubMed  Google Scholar 

  73. Lucks J, Müller R. Medication vehicles made of solid lipid particles (solid lipid nanospheres SLN). EP0000605497. 1991.

  74. Ragno G, Cione E, Garofalo A, Genchi G, Ioele G, Risoli A, et al. Design and monitoring of photostability systems for amlodipine dosage forms. Int J Pharm. 2003;265(1):125–32.

    Article  CAS  PubMed  Google Scholar 

  75. Khames A. Liquisolid technique: a promising alternative to conventional coating for improvement of drug photostability in solid dosage forms. Expert Opin Drug Deliv. 2013;10(10):1335–43.

    Article  CAS  PubMed  Google Scholar 

  76. Pignatello R, Ferro M, De Guidi G, Salemi G, Vandelli MA, Guccione S, et al. Preparation, characterisation and photosensitivity studies of solid dispersions of diflunisal and Eudragit RS100® and RL100®. Int J Pharm. 2001;218(1):27–42.

    Article  CAS  PubMed  Google Scholar 

  77. Li J, Lee IW, Shin GH, Chen X, Park HJ. Curcumin-Eudragit® E PO solid dispersion: a simple and potent method to solve the problems of curcumin. Eur J Pharm Biopharm. 2015;94:322–32.

    Article  CAS  PubMed  Google Scholar 

  78. Onoue S, Takahashi H, Kawabata Y, Seto Y, Hatanaka J, Timmermann B, et al. Formulation design and photochemical studies on nanocrystal solid dispersion of curcumin with improved oral bioavailability. J Pharm Sci. 2010;99(4):1871–81.

    Article  CAS  PubMed  Google Scholar 

  79. Kojo Y, Matsunaga S, Suzuki H, Sato H, Seto Y, Onoue S. Improved oral absorption profile of itraconazole in hypochlorhydria by self-micellizing solid dispersion approach. Eur J Pharm Sci. 2017;97:55–61.

    Article  CAS  PubMed  Google Scholar 

  80. Kawabata Y, Yamamoto K, Debari K, Onoue S, Yamada S. Novel crystalline solid dispersion of tranilast with high photostability and improved oral bioavailability. Eur J Pharm Sci. 2010;39(4):256–62.

    Article  CAS  PubMed  Google Scholar 

  81. Fujimoto Y, Hirai N, Takatani-Nakase T, Takahashi K. Photostable solid dispersion of nifedipine by porous calcium silicate. Chem Pharm Bull. 2016;64(8):1218–21.

    Article  CAS  PubMed  Google Scholar 

  82. Chinnian D, Asker AF. Photostability profiles of minoxidil solutions. PDA J Pharm Sci Technol. 1996;50(2):94–8.

    CAS  PubMed  Google Scholar 

  83. Islam MS, Asker AF. Photoprotection of daunorubicin hydrochloride with sodium sulfite. PDA J Pharm Sci Technol. 1995;49(3):122–6.

    CAS  PubMed  Google Scholar 

  84. Asker AF, Ferdous AJ. Photodegradation of furosemide solutions. PDA J Pharm Sci Technol. 1996;50(3):158–62.

    CAS  PubMed  Google Scholar 

  85. Ahmad I, Sheraz M, Ahmed S, Bano R, Vaid F. Photochemical interaction of ascorbic acid with riboflavin, nicotinamide and alpha-tocopherol in cream formulations. Int J Cosmet Sci. 2012;34(2):123–31.

    Article  CAS  PubMed  Google Scholar 

  86. Afonso S, Horita K, Sousa e Silva JS, Almeida IF, amaral MH, lobão PA, et al. Photodegradation of avobenzone: stabilization effect of antioxidants. J Photochem Photobiol B. 2014;140:36–40.

    Article  CAS  PubMed  Google Scholar 

  87. Budavari S, O’Neil MJ, Smith A, Heckelman PE. The Merck index. Rahway: Merck & Co. Inc; 1989. p. 1008.

    Google Scholar 

  88. Asker A, Habib M. Effect of certain stabilizers on photobleacing of riboflavin solutions. Drug Dev Ind Pharm. 1990;16(1):149–56.

    Article  CAS  Google Scholar 

  89. Asker AF, Habib MJ. Effect of certain additives on photodegradation of tetracycline hydrochloride solutions. PDA J Pharm Sci Technol. 1991;45(2):113–5.

    CAS  Google Scholar 

  90. Thoma K, Spilgies H. Photostabilization of solid and semisolid dosage forms. Pharmaceutical Photostability and Stabilization Technology. CRC-Press. 2006;163:323.

  91. Thoma K, Kübler N. Einfluss von Hilfsstoffen auf die photozersetzung von arzneistoffen. Pharmazie. 1997;52(2):122–9.

    CAS  Google Scholar 

  92. Kaminski E, Cohn R, McGuire J, Carstensen J. Light stability of norethindrone and ethinyl estradiol formulated with FD&C colorants. J Pharm Sci. 1979;68(3):368–70.

    Article  CAS  PubMed  Google Scholar 

  93. Desai D, Abdelnasser M, Rubitski B, Varia S. Photostabilization of uncoated tablets of sorivudine and nifedipine by incorporation of synthetic iron oxides. Int J Pharm. 1994;103(1):69–76.

    Article  CAS  Google Scholar 

  94. Litvić M, Šmic K, Vinković V, Filipan-Litvić M. A study of photodegradation of drug rosuvastatin calcium in solid state and solution under UV and visible light irradiation: the influence of certain dyes as efficient stabilizers. J Photochem Photobiol A Chem. 2013;252:84–92.

    Article  Google Scholar 

  95. Teraoka R, Matsuda Y, Sugimoto I. Quantitative design for photostabilization of nifedipine by using titanium dioxide and/or tartrazine as colourants in model film coating systems. J Pharm Pharmacol. 1989;41(5):293–7.

    Article  CAS  PubMed  Google Scholar 

  96. Ambrogi V, Latterini L, Nocchetti M, Pagano C, Ricci M. Montmorillonite as an agent for drug photostability. J Mater Chem. 2012;22(42):22743–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Narasimha Murthy.

Additional information

Guest Editors: S.Narasimha Murthy and Michael A. Repka

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janga, K.Y., King, T., Ji, N. et al. Photostability Issues in Pharmaceutical Dosage Forms and Photostabilization. AAPS PharmSciTech 19, 48–59 (2018). https://doi.org/10.1208/s12249-017-0869-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-017-0869-z

KEY WORDS

Navigation