Skip to main content

Advertisement

Log in

Solid-State Stability Issues of Drugs in Transdermal Patch Formulations

  • Mini-Review
  • Theme: Stability of Pharmaceutical Excipients
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The transdermal patch formulation has many advantages, including noninvasiveness, an ability to bypass the first-pass metabolism, low dosage requirements, and prolonged drug delivery. However, the instability of solid-state drugs is one of the most critical problems observed in transdermal patch products. Therefore, a well-characterized approach for counteracting stability problems in solid-state drugs is crucial for improving the performance of transdermal patch products. This review provides insight into the solid-state stability of drugs associated with transdermal patch products and offers a comprehensive update on the various approaches being used for improving the stability of the active pharmaceutical ingredients currently being used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Newman AW, Byrn SR. Solid-state analysis of the active pharmaceutical ingredient in drug products. Drug Discov Today. 2003;8(19):898–905.

    Article  CAS  PubMed  Google Scholar 

  2. Padula C, Nicoli S, Aversa V, Colombo P, Falson F, Pirot F, et al. Bioadhesive film for dermal and transdermal drug delivery. Eur J Dermatol. 2007;17(4):309–12.

    CAS  PubMed  Google Scholar 

  3. U.S. Food and Drug Administration. Enforcement Report for May 14, 2008. U.S. Food and Drug Administration, 30 APR 2009. Web. 4 NOV 2012. 2012 [cited 2016 October 30]; Available from: http://www.accessdata.fda.gov/drugsatfda_docs/nda/2012/021829Orig1s001s002.pdf.

  4. U.S. Food and Drug Administration. Enforcement Report for June 6, 2012. U.S. Food and Drug Administration, 07 JUN 2012. Web. 4 NOV 2012. [cited 2016 October 30]; Available from: http://www.fda.gov/Safety/Recalls/EnforcementReports/ucm307229.htm.

  5. Jain P, Banga AK. Inhibition of crystallization in drug-in-adhesive-type transdermal patches. Int J Pharm. 2010;394:68–74.

    Article  CAS  PubMed  Google Scholar 

  6. Chaudhuri KR. Crystallisation within transdermal rotigotine patch: is there cause for concern. Expert Opin Drug Deliv. 2008;5(11):1169–71.

    Article  CAS  PubMed  Google Scholar 

  7. Brown MB, Martin GP, Jones SA, Akomeah FK. Dermal and transdermal drug delivery systems: current and future prospects. Drug Deliv. 2006;13(3):175–87.

    Article  CAS  PubMed  Google Scholar 

  8. Roy BN, editor. Crystal growth from melts: applications to growth of groups 1 and 2 crystals. John Wiley & Sons Incorporated; 1992.

  9. Mullin JW. Crystallization. 4th ed. Burlington: Elsevier Butterworth-Heinemann; 2001.

    Google Scholar 

  10. Bhugra C, Pikal MJ. Role of thermodynamic, molecular, and kinetic factors in crystallization from the amorphous state. J Pharm Sci. 2008;97(4):1329–49.

    Article  CAS  PubMed  Google Scholar 

  11. Avrami M. Kinetics of phase change. I general theory. J Chem Phys. 1939;7(12):1103–12.

    Article  CAS  Google Scholar 

  12. Avrami M. Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8(2):212–24.

    Article  CAS  Google Scholar 

  13. Johari GP, Kim S, Shanker RM. Dielectric relaxation and crystallization of ultraviscous melt and glassy states of aspirin, ibuprofen, progesterone, and quinidine. J Pharm Sci. 2007;96(5):1159–75.

    Article  CAS  PubMed  Google Scholar 

  14. Lipp R, Mu¨ller-Fahrnow A. Use of X-ray crystallography for the characterization of single crystals grown in steroid containing transdermal drug delivery systems, Eur J Pharm Biopharm.1999;4:133–38.

  15. Singhal D, Curatolo W. Drug polymorphism and dosage form design: a practical perspective. Adv Drug Deliv Rev. 2004;56(3):335–47.

    Article  CAS  PubMed  Google Scholar 

  16. Kim JH, Choi HK. Effect of additives on the crystallization and the permeation of ketoprofen from adhesive matrix. Int J Pharm. 2002;236:81–5.

    Article  CAS  PubMed  Google Scholar 

  17. Raghavan SL, Trividic A, Davis AF, Hadgraft J. Crystallization of hydrocortisone acetate: influence of polymers. Int J Pharm. 2001;212:213–21.

    Article  CAS  PubMed  Google Scholar 

  18. Doherty C, York P. Evidence for solid-state and liquid-state interactions in a furosemide polyvinylpyrrolidone solid dispersion. J Pharm Sci. 1987;76:731–7.

    Article  CAS  PubMed  Google Scholar 

  19. Taylor LS, Zografi G. Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersions. Pharm Res. 1997;14:1691–8.

    Article  CAS  PubMed  Google Scholar 

  20. Balasubramanium A, Sharma PK. Official Journal of the Patent Office-India, 2656/MUM/2012 A, A61K9/00. Issue no: 40/2012, Page no-16505.

  21. Stefano FJE, Biali FI, Scasso AF. Crystallization in NETA-17P-E2 Proc. Int Symp Contr Rel Bioact Mater. 1997;24: 703–4.

  22. Lipp R, Miiller-Fahmow A. X-ray structure determinations of crystals grown in transdermal delivery systems containing estradiol or gestodene. Pharm Res. 1994;11:S-213.

    Article  Google Scholar 

  23. Barry BW. Dermatological Formulations. New York: Marcel Dekker; 1983.

    Google Scholar 

  24. Caning T, Theniault D. Transdermal hormone replacement adhesives. Roc Int Symp Contr Rel Bioact Mater. 1997;24:891–2.

    Google Scholar 

  25. Lipp R. Selection and use of crystallization inhibitors for matrix-type transdermal drug-delivery systems containing sex steroids. J Pharm Pharmacol. 1998;50:1343–9.

    Article  CAS  PubMed  Google Scholar 

  26. Sachdeva V, Baia Y, Kydonieusb A, Bangaa AK. Formulation and optimization of desogestrel transdermal contraceptive patch using crystallization studies. Int J Pharm. 2013;441:9–18.

    Article  CAS  PubMed  Google Scholar 

  27. Rodríguez-Spong B, Price CP, Jayasankar A, Matzger AJ, Rodríguez-Hornedo N. General principles of pharmaceutical solid polymorphism: a supramolecular perspective. Adv Drug Deliv Rev. 2004;56(3):241–74.

    Article  PubMed  Google Scholar 

  28. Nangia A, Row TG. Polymorphism. CrystEngComm. 2015;17(28):5128–8.

  29. Kitamura M. Strategy for control of crystallization of polymorphs. CrystEngComm. 2009;11:949–64.

    Article  CAS  Google Scholar 

  30. Kitamura M. Controlling factors and mechanism of polymorphic crystallization. Cryst Growth Des. 2004;4:1153–9.

    Article  CAS  Google Scholar 

  31. Garg RK, Sarkar D. Polymorphism control of p-aminobenzoic acid by isothermal anti-solvent crystallization. J Cryst Growth. 2016;454:180–5.

    Article  CAS  Google Scholar 

  32. Subedia RK, Ryoob J-P, Moonb C, Choia H-K. Influence of formulation variables in transdermal drug delivery system containing zolmitriptan. Int J Pharm. 2011;419:209–14.

    Article  Google Scholar 

  33. Lakshman JP, Cao Y, Kowalski J, Serajuddin ATM. Application of melt extrusion in the development of a physically and chemically stable high-energy amorphous solid dispersion of a poorly water-soluble. Mol Pharm. 2008;5(6):994–1002.

    Article  CAS  PubMed  Google Scholar 

  34. Cilurzo F, Minghetti P. Adehsive properties: a critical issue in transdermal patch development. Expert Opin Drug Deliv. 2012;9:33–45.

  35. Wolff HM. Safety and quality of transdermal drug delivery Systems, 4th annual drug delivery & formulation summit (WTG) berlin, 18th–20th February 2013.

  36. Banov D, inventor. Use of heptyl glucoside as skin penetration enhancer in transdermal pharmaceutical compositions. United States patent application US 14/682,419. 2015 Apr 9.

  37. Ravula R, Herwadkar AK, Abla MJ, Little J, Banga AK. Formulation optimization of a drug in adhesive transdermal analgesic patch. Drug Dev Ind Pharm. 2016;42(6):862–70.

    Article  CAS  Google Scholar 

  38. Arora P, Mukherjee B. Design, development, physicochemical, and in vitro and in vivo evaluation of transdermal patches containing diclofenac diethylammonium salt. J Pharm Sci. 2002;91(9):2076–89.

    Article  CAS  PubMed  Google Scholar 

  39. Weng W, Quan P, Liu C, Zhao H, Liang F. Design of a Drug-in-Adhesive Transdermal Patch for risperidone: effect of drug-additive interactions on the crystallization inhibition and in vitro/in vivo correlation study. J Pharm Sci. 2016;105(10):3153–61.

    Article  CAS  PubMed  Google Scholar 

  40. Ruiz JL, Rodríguez JH, Comas MD, Masip IM, inventors; Laboratorios Salvat, SA, assignee. Stable crystalline salt of (R)-3-fluorophenyl-3, 4, 5-trifluorobenzylcarbamic acid 1-azabicyclo [2.2. 2] oct-3-yl ester. United States patent US 8,871,787. 2014 Oct 28.

  41. Shende C, Smith W, Brouillette C, Farquharson S. Drug stability analysis by Raman spectroscopy. Pharmaceutics. 2014;6(4):651–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Latsch S, Selzer T, Fink L, Kreuter J. Crystallisation of estradiol containing TDDS determined by isothermal microcalorimetry, X-ray diffraction, and optical microscopy. Eur J Pharm Biopharm. 2003;56(1):43–52.

    Article  CAS  PubMed  Google Scholar 

  43. Lloyd GR, Craig DQ, Smith A. An investigation into the production of paracetamol solid dispersions in PEG 4000 using hot stage differential interference contrast microscopy. Int J Pharm. 1997;158(1):39–46.

    Article  CAS  Google Scholar 

  44. Coleman NJ, Craig DQM. Modulated temperature differential scanning calorimetry: a novel approach to pharmaceutical thermal analysis. Int J Pharm. 1996;135:13–29.

    Article  CAS  Google Scholar 

  45. Ivanisevic I, McClurg RB, Schields PJ. Uses of X ray powder diffraction in the pharmaceutical industry. In: Gad SC, editor. Pharmaceutical sciences encyclopedia: drug discovery, development, and manufacturing. New Jersey: John Wiley & Sons, Inc.; 2010. p. 1–42.

    Google Scholar 

  46. Newman A, Engers D, Bates S, Ivanisevic I, Kelly RC, Zografi G. Characterization of amorphous API: polymer mixtures using X-ray powder diffraction. J Pharm Sci. 2008;97:4840–56.

    Article  CAS  PubMed  Google Scholar 

  47. Laggner P, Kriechbaum M, Rappolt M, Pabst G, Amenitsch H, Johs A, et al. Pharmaceutical solid-state characterization by small- and wide-angle X-ray scattering. In: Zakrzewski AM, editor. Solid state characterization of pharmaceuticals. Danbury: Assa International; 2005. p. 407–48.

    Google Scholar 

  48. Mills S. Pharmaceutical excipients—an overview including considerations for pediatric dosing. International Pharmaceutical Federation, World Health Organization. 21, June, 2010.

  49. Konno H, Taylor LS. Influence of different polymers on the crystallization tendency of molecularly dispersed amorphous felodipine. J Pharm Sci. 2006;95:2692–705.

    Article  CAS  PubMed  Google Scholar 

  50. Rumondor ACF, Wikstrom H, Van Eerdenbrugh B, Taylor LS. Understanding the tendency of amorphous solid dispersions to undergo amorphous-amorphous phase separation in the presence of absorbed moisture. AAPS PharmSciTech. 2011;12:1209–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yoo S-u, et al. Miscibility/stability considerations in binary solid dispersion systems composed of functional excipients towards the design of multi-component amorphous systems. J Pharm Sci. 2009;98(12):4711–23.

    Article  CAS  PubMed  Google Scholar 

  52. Sakamoto T, Fujimaki Y, Takada Y, Aida K, Terahara T, Kawanishi T, et al. Non-destructive analysis of tulobuterol crystal reservoir-type transdermal tapes using near infrared spectroscopy and imaging. J Pharm Biomed Anal. 2013;74:14–21.

    Article  CAS  PubMed  Google Scholar 

  53. Diehl B, Grout B. NIR spectroscopy—just one of many analytical tools for PAT. Am Pharm Rev. 2011;14:70–4.

    CAS  Google Scholar 

  54. Coates PD, et al. In-process vibrational spectroscopy and ultrasound measurements in polymer melt extrusion. Polymer. 2003;44(19):5937–49.

    Article  CAS  Google Scholar 

  55. Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26(11):1261–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kotiyan PN, Vavia PR. Eudragits: role as crystallization inhibitors in drug in-adhesive transdermal systems of estradiol. Eur J Pharm Biopharm. 2001;52:173–80.

    Article  CAS  PubMed  Google Scholar 

  57. Newman A, Wenslow R. Solid form changes during drug development: good, bad, and ugly case studies. AAPS Open. 2016;2(1):1.

    Article  Google Scholar 

  58. Baghel S, Cathcart H, O'Reilly NJ. Polymeric amorphous solid dispersions: a review of amorphization, crystallization, stabilization, solid-state characterization, and aqueous solubilization of biopharmaceutical classification system class II drugs. J Pharm Sci. 2016.

  59. Park E-S, Yu C, Yun B-J, Ko I-J, Chi S-C. Transdermal delivery of piroxicam using microemulsions. Arch Pharm Res. 2005;28(2):243–8.

    Article  CAS  PubMed  Google Scholar 

  60. Bruce C, et al. Crystal growth formation in melt extrudates. Int J Pharm. 2007;341(1–2):162–72.

    Article  CAS  PubMed  Google Scholar 

  61. Brittain HG. Methods for the characterization of polymorphs and solvates. In: Brittain HG, editor. Polymorphism in pharmaceutical solids. New York: Marcel Dekker; 1999. p. 227–78.

    Google Scholar 

  62. Imani M, Lahooti-Fard F, Taghizadeh S, Mitra Takrousta. Effect of adhesive layer thickness and drug loading on estradiol crystallization in a transdermal drug delivery system, AAPS Pharm Sci Tech. 2010;11(3).

  63. Baird JA, Taylor LS. Evaluation of amorphous solid dispersion properties using thermal analysis techniques. Adv Drug Deliv Rev. 2012;64:396–421.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Narasimha Murthy.

Additional information

Guest Editors: S.Narasimha Murthy and Michael A. Repka

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, P.K., Panda, A., Pradhan, A. et al. Solid-State Stability Issues of Drugs in Transdermal Patch Formulations. AAPS PharmSciTech 19, 27–35 (2018). https://doi.org/10.1208/s12249-017-0865-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-017-0865-3

KEY WORDS

Navigation