Skip to main content

Advertisement

Log in

Colon-Targeted Delivery of IgY Against Clostridium difficile Toxin A and B by Encapsulation in Chitosan-Ca Pectinate Microbeads

  • Research Article
  • Theme: Recent Trends in the Development of Chitosan-Based Drug Delivery Systems
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

This study investigated the use of a newly developed chitosan-Ca pectinate microbead formulation for the colon-targeted delivery of anti-A/B toxin immunoglobulin of egg yolk (IgY) to inhibit toxin binding to colon mucosa cells. The effect of the three components (pectinate, calcium chloride, and chitosan) used for the microbead production was examined with the aim of identifying the optimal levels to improve drug encapsulation efficiency, swelling ratio, and cumulative IgY release rate. The optimized IgY-loaded bead component was pectin 5% (w/v), CaCl2 3% (w/v), and chitosan 0.5% (w/v). Formulated beads were spherical with 1.2-mm diameter, and the drug loading was 45%. An in vitro release study revealed that chitosan-Ca pectinate microbeads inhibited IgY release in the upper gastrointestinal tract and significantly improved the site-specific release of IgY in the colon. An in vivo rat study demonstrated that 72.6% of biologically active IgY was released specifically in the colon. These results demonstrated that anti-A/B toxin IgY-loaded chitosan-Ca pectinate oral microbeads improved IgY release behavior in vivo, which could be used as an effective oral delivery platform for the biological treatment of Clostridium difficile infection (CDI).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Brazier JS, Fitzgerald TC, Hosein I, Cefai C, Looker N, Walker M, et al. Screening for carriage and nosocomial acquisition of Clostridium difficile by culture: a study of 284 admissions of elderly patients to six general hospitals in Wales. J Hosp Infect. 1999;43(4):317–9.

    Article  CAS  PubMed  Google Scholar 

  2. Simor AE, Bradley SF, Strausbaugh LJ, Crossley K, Nicolle LE, Committee SL-T-C. Clostridium difficile in long-term-care facilities for the elderly. Infect Control Hosp Epidemiol. 2002;23(11):696–703. doi:10.1086/501997.

    Article  PubMed  Google Scholar 

  3. McDonald LC, Killgore GE, Thompson A, Owens Jr RC, Kazakova SV, Sambol SP, et al. An epidemic, toxin gene-variant strain of Clostridium difficile. N Engl J Med. 2005;353(23):2433–41. doi:10.1056/NEJMoa051590.

    Article  CAS  PubMed  Google Scholar 

  4. Warny M, Pepin J, Fang A, Killgore G, Thompson A, Brazier J, et al. Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet. 2005;366(9491):1079–84. doi:10.1016/S0140-6736(05)67420-X.

    Article  CAS  PubMed  Google Scholar 

  5. Lessa FC, Winston LG, McDonald LC, Emerging Infections Program CST. Burden of Clostridium difficile infection in the United States. N Engl J Med. 2015;372(24):2369–70. doi:10.1056/NEJMc1505190.

    PubMed  Google Scholar 

  6. Jin K, Wang S, Huang Z, Lu S. Clostridium difficile infections in China. J Biomed Res. 2010;24(6):411–6. doi:10.1016/S1674-8301(10)60055-3.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lyras D, O’Connor JR, Howarth PM, Sambol SP, Carter GP, Phumoonna T, et al. Toxin B is essential for virulence of Clostridium difficile. Nature. 2009;458(7242):1176–9. doi:10.1038/nature07822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cohen SH, Gerding DN, Johnson S, Kelly CP, Loo VG, McDonald LC, et al. Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the society for healthcare epidemiology of America (SHEA) and the infectious diseases society of America (IDSA). Infect Control Hosp Epidemiol. 2010;31(5):431–55. doi:10.1086/651706.

    Article  PubMed  Google Scholar 

  9. Eckert C, Lalande V, Barbut F. Clostridium difficile colitis. Rev Prat. 2015;65(1):21–5.

    PubMed  Google Scholar 

  10. Goldstein EJ, Babakhani F, Citron DM. Antimicrobial activities of fidaxomicin. Clin Infect Dis. 2012;55 Suppl 2:S143–8. doi:10.1093/cid/cis339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kali A, Charles MV, Srirangaraj S. Cadazolid: a new hope in the treatment of Clostridium difficile infection. Aust Med J. 2015;8(8):253–62. doi:10.4066/AMJ.2015.2441.

    Article  Google Scholar 

  12. Surawicz CM, Alexander J. Treatment of refractory and recurrent Clostridium difficile infection. Nat Rev Gastroenterol Hepatol. 2011;8(6):330–9. doi:10.1038/nrgastro.2011.59.

    Article  CAS  PubMed  Google Scholar 

  13. Rao K, Young VB. Fecal microbiota transplantation for the management of Clostridium difficile infection. Infect Dis Clin North Am. 2015;29(1):109–22. doi:10.1016/j.idc.2014.11.009.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ghose C, Kelly CP. The prospect for vaccines to prevent Clostridium difficile infection. Infect Dis Clin North Am. 2015;29(1):145–62. doi:10.1016/j.idc.2014.11.013.

    Article  PubMed  Google Scholar 

  15. Goldberg EJ, Bhalodia S, Jacob S, Patel H, Trinh KV, Varghese B, et al. Clostridium difficile infection: a brief update on emerging therapies. Am J Health Syst Pharm. 2015;72(12):1007–12. doi:10.2146/ajhp140645.

    Article  CAS  PubMed  Google Scholar 

  16. Lubbert C, John E, von Muller L. Clostridium difficile infection: guideline-based diagnosis and treatment. Dtsch Arztebl Int. 2014;111(43):723–31. doi:10.3238/arztebl.2014.0723.

    PubMed  PubMed Central  Google Scholar 

  17. Spencer J, Leuzzi R, Buckley A, Irvine J, Candlish D, Scarselli M, et al. Vaccination against Clostridium difficile using toxin fragments: observations and analysis in animal models. Gut Microbes. 2014;5(2):225–32. doi:10.4161/gmic.27712.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tian JH, Fuhrmann SR, Kluepfel-Stahl S, Carman RJ, Ellingsworth L, Flyer DC. A novel fusion protein containing the receptor binding domains of C. difficile toxin A and toxin B elicits protective immunity against lethal toxin and spore challenge in preclinical efficacy models. Vaccine. 2012;30(28):4249–58. doi:10.1016/j.vaccine.2012.04.045.

    Article  CAS  PubMed  Google Scholar 

  19. Mulvey GL, Dingle TC, Fang L, Strecker J, Armstrong GD. Therapeutic potential of egg yolk antibodies for treating Clostridium difficile infection. J Med Microbiol. 2011;60(Pt 8):1181–7. doi:10.1099/jmm.0.029835-0.

    Article  CAS  PubMed  Google Scholar 

  20. Shimizu M, Fitzsimmons RC, Nakai S. Anti-E. coli immunoglobulin Y isolated from egg yolk of immunized chickens as a potential food ingredient. J Food Sci. 1988;53(5):1360–8.

    Article  Google Scholar 

  21. Bansal V, Malviya R, Malaviya T, Sharma PK. Novel prospective in colon specific drug delivery system. Polim Med. 2014;44(2):109–18.

    PubMed  Google Scholar 

  22. Wong TW, Colombo G, Sonvico F. Pectin matrix as oral drug delivery vehicle for colon cancer treatment. AAPS PharmSciTech. 2011;12(1):201–14. doi:10.1208/s12249-010-9564-z.

    Article  CAS  PubMed  Google Scholar 

  23. Yoshida T, Lai TC, Kwon GS, Sako K. pH- and ion-sensitive polymers for drug delivery. Expert Opin Drug Deliv. 2013;10(11):1497–513. doi:10.1517/17425247.2013.821978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sandolo C, Pechine S, Le Monnier A, Hoys S, Janoir C, Coviello T, et al. Encapsulation of Cwp84 into pectin beads for oral vaccination against Clostridium difficile. Eur J Pharm Biopharm. 2011;79(3):566–73. doi:10.1016/j.ejpb.2011.05.011.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang S, Xing P, Guo G, Liu H, Lin D, Dong C, et al. Development of microbeads of chicken yolk antibodies against Clostridium difficile toxin A for colonic-specific delivery. Drug Deliv. 2016;23(6):1940–7. doi:10.3109/10717544.2015.1022836.

    Article  CAS  PubMed  Google Scholar 

  26. Sinha VR, Kumria R. Polysaccharides in colon-specific drug delivery. Int J Pharm. 2001;224(1–2):19–38.

    Article  CAS  PubMed  Google Scholar 

  27. Fernandes M, Goncalves IC, Nardecchia S, Amaral IF, Barbosa MA, Martins MC. Modulation of stability and mucoadhesive properties of chitosan microspheres for therapeutic gastric application. Int J Pharm. 2013;454(1):116–24. doi:10.1016/j.ijpharm.2013.06.068.

    Article  CAS  PubMed  Google Scholar 

  28. Hiorth M, Versland T, Heikkila J, Tho I, Sande SA. Immersion coating of pellets with calcium pectinate and chitosan. Int J Pharm. 2006;308(1–2):25–32. doi:10.1016/j.ijpharm.2005.10.012.

    Article  CAS  PubMed  Google Scholar 

  29. Hansen P, Scoble JA, Hanson B, Hoogenraad NJ. Isolation and purification of immunoglobulins from chicken eggs using thiophilic interaction chromatography. J Immunol Methods. 1998;215(1–2):1–7.

    Article  CAS  PubMed  Google Scholar 

  30. Bigucci F, Luppi B, Monaco L, Cerchiara T, Zecchi V. Pectin-based microspheres for colon-specific delivery of vancomycin. J Pharm Pharmacol. 2009;61(1):41–6. doi:10.1211/jpp/61.01.0006.

    Article  CAS  PubMed  Google Scholar 

  31. Si L, Zhao Y, Huang J, Li S, Zhai X, Li G. Calcium pectinate gel bead intended for oral protein delivery: preparation improvement and formulation development. Chem Pharm Bull (Tokyo). 2009;57(7):663–7.

    Article  CAS  Google Scholar 

  32. Takagi I, Shimizu H, Yotsuyanagi T. Application of alginate gel as a vehicle for liposomes. I. Factors affecting the loading of drug-containing liposomes and drug release. Chem Pharm Bull (Tokyo). 1996;44(10):1941–7.

    Article  CAS  Google Scholar 

  33. Nokhodchi A, Tailor A. In situ cross-linking of sodium alginate with calcium and aluminum ions to sustain the release of theophylline from polymeric matrices. Farmaco. 2004;59(12):999–1004. doi:10.1016/j.farmac.2004.08.006.

    Article  CAS  PubMed  Google Scholar 

  34. Mura P, Maestrelli F, Cirri M, Gonzalez Rodriguez ML, Rabasco Alvarez AM. Development of enteric-coated pectin-based matrix tablets for colonic delivery of theophylline. J Drug Target. 2003;11(6):365–71. doi:10.1080/10611860310001639130.

    Article  CAS  PubMed  Google Scholar 

  35. Dingle KE, Griffiths D, Didelot X, Evans J, Vaughan A, Kachrimanidou M, et al. Clinical Clostridium difficile: clonality and pathogenicity locus diversity. PLoS One. 2011;6(5):e19993. doi:10.1371/journal.pone.0019993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Awad MM, Johanesen PA, Carter GP, Rose E, Lyras D. Clostridium difficile virulence factors: insights into an anaerobic spore-forming pathogen. Gut Microbes. 2014;5(5):579–93. doi:10.4161/19490976.2014.969632.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Abougergi MS, Kwon JH. Intravenous immunoglobulin for the treatment of Clostridium difficile infection: a review. Dig Dis Sci. 2011;56(1):19–26. doi:10.1007/s10620-010-1411-2.

    Article  CAS  PubMed  Google Scholar 

  38. Antonin KH, Saano V, Bieck P, Hastewell J, Fox R, Lowe P, et al. Colonic absorption of human calcitonin in man. Clin Sci (Lond). 1992;83(5):627–31.

    Article  CAS  Google Scholar 

  39. Saffran M, Kumar GS, Savariar C, Burnham JC, Williams F, Neckers DC. A new approach to the oral administration of insulin and other peptide drugs. Science. 1986;233(4768):1081–4.

    Article  CAS  PubMed  Google Scholar 

  40. Gibson SA, McFarlan C, Hay S, MacFarlane GT. Significance of microflora in proteolysis in the colon. Appl Environ Microbiol. 1989;55(3):679–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Youan BB. Chronopharmaceutics: gimmick or clinically relevant approach to drug delivery? J Control Release. 2004;98(3):337–53. doi:10.1016/j.jconrel.2004.05.015.

    Article  CAS  PubMed  Google Scholar 

  42. Akala EO, Elekwachi O, Chase V, Johnson H, Lazarre M, Scott K. Organic redox-initiated polymerization process for the fabrication of hydrogels for colon-specific drug delivery. Drug Dev Ind Pharm. 2003;29(4):375–86. doi:10.1081/DDC-120018373.

    Article  CAS  PubMed  Google Scholar 

  43. Odeku OA, Fell JT. In-vitro evaluation of khaya and albizia gums as compression coatings for drug targeting to the colon. J Pharm Pharmacol. 2005;57(2):163–8. doi:10.1211/0022357055362.

    Article  CAS  PubMed  Google Scholar 

  44. Butte K, Momin M, Deshmukh H. Optimisation and in vivo evaluation of pectin based drug delivery system containing curcumin for colon. Int J Biomater. 2014;2014:924278. doi:10.1155/2014/924278.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Momin M, Pundarikakshudu K. In vitro studies on guar gum based formulation for the colon targeted delivery of sennosides. J Pharm Pharm Sci. 2004;7(3):325–31.

    CAS  PubMed  Google Scholar 

  46. Kim TH, Park YH, Kim KJ, Cho CS. Release of albumin from chitosan-coated pectin beads in vitro. Int J Pharm. 2003;250(2):371–83.

    Article  CAS  PubMed  Google Scholar 

  47. Mennini N, Furlanetto S, Maestrelli F, Pinzauti S, Mura P. Response surface methodology in the optimization of chitosan-Ca pectinate bead formulations. Eur J Pharm Sci. 2008;35(4):318–25. doi:10.1016/j.ejps.2008.07.011.

    Article  CAS  PubMed  Google Scholar 

  48. Dupuis G, Chambin O, Genelot C, Champion D, Pourcelot Y. Colonic drug delivery: influence of cross-linking agent on pectin beads properties and role of the shell capsule type. Drug Dev Ind Pharm. 2006;32(7):847–55. doi:10.1080/03639040500536718.

    Article  CAS  PubMed  Google Scholar 

  49. Mladenovska K, Raicki RS, Janevik EI, Ristoski T, Pavlova MJ, Kavrakovski Z, et al. Colon-specific delivery of 5-aminosalicylic acid from chitosan-Ca-alginate microparticles. Int J Pharm. 2007;342(1–2):124–36. doi:10.1016/j.ijpharm.2007.05.028.

    Article  CAS  PubMed  Google Scholar 

  50. Sriamornsak P, Thirawong N, Puttipipatkhachorn S. Emulsion gel beads of calcium pectinate capable of floating on the gastric fluid: effect of some additives, hardening agent or coating on release behavior of metronidazole. Eur J Pharm Sci. 2005;24(4):363–73. doi:10.1016/j.ejps.2004.12.004.

    Article  CAS  PubMed  Google Scholar 

  51. George M, Abraham TE. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. J Control Release. 2006;114(1):1–14. doi:10.1016/j.jconrel.2006.04.017.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Natural Science Foundation of Shandong (No: ZR2014HM062) and the National Science and Technology Major Project (2013ZX09402201).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kaoxiang Sun or Dongxiao Feng.

Ethics declarations

This study was performed in accordance with the recommendations of the US Department of Health and Human Services for the care and use of laboratory animals. All animals were exposed to CO2 for anesthesia before being sacrificed, and the protocols were approved by the Animal Ethics Committee of Shandong Binzhou Medical University (permit number: 2014–05).

Conflict of Interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Additional information

Guest Editors: Claudio Salomon, Francisco Goycoolea, and Bruno Moerschbacher

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, P., Shi, Y., Dong, C. et al. Colon-Targeted Delivery of IgY Against Clostridium difficile Toxin A and B by Encapsulation in Chitosan-Ca Pectinate Microbeads. AAPS PharmSciTech 18, 1095–1103 (2017). https://doi.org/10.1208/s12249-016-0656-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0656-2

KEY WORDS

Navigation