Skip to main content

Advertisement

Log in

Enhanced Solubility and Dissolution Rate of Lacidipine Nanosuspension: Formulation Via Antisolvent Sonoprecipitation Technique and Optimization Using Box–Behnken Design

  • Research Article
  • Theme: Recent Trends in the Development of Chitosan-Based Drug Delivery Systems
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Lacidipine (LCDP) is a highly lipophilic calcium channel blocker of poor aqueous solubility leading to poor oral absorption. This study aims to prepare and optimize LCDP nanosuspensions using antisolvent sonoprecipitation technique to enhance the solubility and dissolution of LCDP. A three-factor, three-level Box–Behnken design was employed to optimize the formulation variables to obtain LCDP nanosuspension of small and uniform particle size. Formulation variables were as follows: stabilizer to drug ratio (A), sodium deoxycholate percentage (B), and sonication time (C). LCDP nanosuspensions were assessed for particle size, zeta potential, and polydispersity index. The formula with the highest desirability (0.969) was chosen as the optimized formula. The values of the formulation variables (A, B, and C) in the optimized nanosuspension were 1.5, 100%, and 8 min, respectively. Optimal LCDP nanosuspension had particle size (PS) of 273.21 nm, zeta potential (ZP) of −32.68 mV and polydispersity index (PDI) of 0.098. LCDP nanosuspension was characterized using x-ray powder diffraction, differential scanning calorimetry, and transmission electron microscopy. LCDP nanosuspension showed saturation solubility 70 times that of raw LCDP in addition to significantly enhanced dissolution rate due to particle size reduction and decreased crystallinity. These results suggest that the optimized LCDP nanosuspension could be promising to improve oral absorption of LCDP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Patravale V, Dandekar P, Jain R. Nanoparticulate systems as drug carriers: the need. In: Nanoparticulate drug delivery. 1st ed: Woodhead Publishing; 2012. p. 1–28.

  2. Shegokar R, Muller RH. Nanocrystals: industrially feasible multifunctional formulation technology for poorly soluble actives. Int J Pharm. 2010;399(1–2):129–39.

    Article  CAS  PubMed  Google Scholar 

  3. Kesisoglou F, Mitra A. Crystalline nanosuspensions as potential toxicology and clinical oral formulations for BCS II/IV compounds. AAPS J. 2012;14(4):677–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vogt M, Kunath K, Dressman JB. Dissolution enhancement of fenofibrate by micronization, cogrinding and spray-drying: comparison with commercial preparations. Eur J Pharm Biopharm. 2008;68(2):283–8.

    Article  CAS  PubMed  Google Scholar 

  5. Seedher N, Kanojia M. Micellar solubilization of some poorly soluble antidiabetic drugs: a technical note. AAPS PharmSciTech. 2008;9(2):431–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Seedher N, Bhatia S. Solubility enhancement of Cox-2 inhibitors using various solvent systems. AAPS PharmSciTech. 2003;4(3):E33.

    Article  CAS  PubMed  Google Scholar 

  7. Sinha S, Ali M, Baboota S, Ahuja A, Kumar A, Ali J. Solid dispersion as an approach for bioavailability enhancement of poorly water-soluble drug ritonavir. AAPS PharmSciTech. 2010;11(2):518–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ran Y, Zhao L, Xu Q, Yalkowsky SH. Solubilization of cyclosporin A. AAPS PharmSciTech. 2001;2(1):E2.

    Article  CAS  PubMed  Google Scholar 

  9. Cao F, Guo J, Ping Q. The physicochemical characteristics of freeze-dried scutellarin-cyclodextrin tetracomponent complexes. Drug Dev Ind Pharm. 2005;31(8):747–56.

    Article  CAS  PubMed  Google Scholar 

  10. Manna L, Banchero M, Sola D, Ferri A, Ronchetti S, Sicardi S. Impregnation of PVP microparticles with ketoprofen in the presence of supercritical CO2. J Supercrit Fluids. 2007;42(3):378–84.

    Article  CAS  Google Scholar 

  11. Gao L, Liu G, Ma J, Wang X, Zhou L, Li X. Drug nanocrystals: in vivo performances. J Control Release. 2012;160(3):418–30.

    Article  CAS  PubMed  Google Scholar 

  12. Sinha B, Muller RH, Moschwitzer JP. Bottom-up approaches for preparing drug nanocrystals: formulations and factors affecting particle size. Int J Pharm. 2013;453(1):126–41.

    Article  CAS  PubMed  Google Scholar 

  13. Junyaprasert VB, Morakul B. Nanocrystals for enhancement of oral bioavailability of poorly water soluble drugs. Asian J Pharm Sci. 2015;10(1):13–23.

    Article  Google Scholar 

  14. Junghanns JU, Muller RH. Nanocrystal technology, drug delivery and clinical applications. Int J Nanomedicine. 2008;3(3):295–309.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Langguth P, Hanafy A, Frenzel D, Grenier P, Nhamias A, Ohlig T, et al. Nanosuspension formulations for low-soluble drugs: pharmacokinetic evaluation using spironolactone as model compound. Drug Dev Ind Pharm. 2005;31(3):319–29.

    Article  CAS  PubMed  Google Scholar 

  16. Jacobs C, Muller RH. Production and characterization of a budesonide nanosuspension for pulmonary administration. Pharm Res. 2002;19(2):189–94.

    Article  CAS  PubMed  Google Scholar 

  17. Moschwitzer J, Achleitner G, Pomper H, Muller RH. Development of an intravenously injectable chemically stable aqueous omeprazole formulation using nanosuspension technology. Eur J Pharm Biopharm. 2004;58(3):615–9.

    Article  PubMed  Google Scholar 

  18. Merisko-Liversidge E, Liversidge GG, Cooper ER. Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur J Pharm Sci. 2003;18(2):113–20.

    Article  CAS  PubMed  Google Scholar 

  19. Liversidge GG, Conzentino P. Drug particle size reduction for decreasing gastric irritancy and enhancing absorption of naproxen in rats. Int J Pharm. 1995;125:309–13.

    Article  CAS  Google Scholar 

  20. Merisko-Liversidge E, Liversidge GG. Nanosizing for oral and parenteral drug delivery: a perspective on formulating poorly-water soluble compounds using wet media milling technology. Adv Drug Deliv Rev. 2011;63(6):427–40.

    Article  CAS  PubMed  Google Scholar 

  21. Lai F, Pini E, Angioni G, Manca ML, Perricci J, Sinico C, et al. Nanocrystals as tool to improve piroxicam dissolution rate in novel orally disintegrating tablets. Eur J Pharm Biopharm. 2011;79(3):552–8.

    Article  CAS  PubMed  Google Scholar 

  22. Mitri K, Shegokar R, Gohla S, Anselmi C, Muller RH. Lutein nanocrystals as antioxidant formulation for oral and dermal delivery. Int J Pharm. 2011;420(1):141–6.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang H, Hollis CP, Zhang Q, Li T. Preparation and antitumor study of camptothecin nanocrystals. Int J Pharm. 2011;415(1–2):293–300.

    Article  CAS  PubMed  Google Scholar 

  24. Xia D, Quan P, Piao H, Sun S, Yin Y, Cui F. Preparation of stable nitrendipine nanosuspensions using the precipitation-ultrasonication method for enhancement of dissolution and oral bioavailability. Eur J Pharm Sci. 2010;40(4):325–34.

    Article  CAS  PubMed  Google Scholar 

  25. Liu D, Xu H, Tian B, Yuan K, Pan H, Ma S, et al. Fabrication of carvedilol nanosuspensions through the anti-solvent precipitation-ultrasonication method for the improvement of dissolution rate and oral bioavailability. AAPS PharmSciTech. 2012;13(1):295–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Montgomery DC. Design and analysis of experiments. 5th ed. New York: Wiley; 2001.

    Google Scholar 

  27. Ferreira SL, Bruns RE, Ferreira HS, Matos GD, David JM, Brandao GC, et al. Box-Behnken design: an alternative for the optimization of analytical methods. Anal Chim Acta. 2007;597(2):179–86.

    Article  CAS  PubMed  Google Scholar 

  28. Solanki AB, Parikh JR, Parikh RH. Formulation and optimization of piroxicam proniosomes by 3-factor, 3-level Box-Behnken design. AAPS PharmSciTech. 2007;8(4):E86.

    Article  PubMed  Google Scholar 

  29. Hanes DS, Weir MR. Calcium antagonists. In: Battegay EJ, Lip GYH, Bakris GL, editors. Hypertension: principles and practice. USA: Taylor & Francis Group; 2005. p. 517–30.

    Chapter  Google Scholar 

  30. ElKasabgy NA, Elsayed I, Elshafeey AH. Design of lipotomes as a novel dual functioning nanocarrier for bioavailability enhancement of lacidipine: in-vitro and in-vivo characterization. Int J Pharm. 2014;472(1–2):369–79.

    Article  CAS  PubMed  Google Scholar 

  31. Basalious EB, Shawky N, Badr-Eldin SM. SNEDDS containing bioenhancers for improvement of dissolution and oral absorption of lacidipine. I: development and optimization. Int J Pharm. 2010;391(1–2):203–11.

    Article  CAS  PubMed  Google Scholar 

  32. Gannu R, Palem CR, Yamsani VV, Yamsani SK, Yamsani MR. Enhanced bioavailability of lacidipine via microemulsion based transdermal gels: formulation optimization, ex vivo and in vivo characterization. Int J Pharm. 2010;388(1–2):231–41.

    Article  CAS  PubMed  Google Scholar 

  33. Zhao J, Luo L, Fu Q, Guo B, Li Y, Geng Y, et al. Improved oral bioavailability of lacidipine using nanosuspension technology: inferior in vitro dissolution and superior in vivo drug absorption verus lacipil(R). Curr Drug Deliv. 2015; in press.

  34. Darekar T, Aithal KS, Shirodkar R, Kumar L, Attari Z, Lewis S. Characterization and in vivo evaluation of lacidipine inclusion complexes with β-cyclodextrin and its derivatives. J Incl Phenom Macrocycl Chem. 2016;84(3):225–35.

    Article  CAS  Google Scholar 

  35. Wu C, Kou L, Ma P, Gao L, Li B, Li R, et al. Interspecies prediction of oral pharmacokinetics of different lacidipine formulations from dogs to human: physiologically based pharmacokinetic modelling combined with biorelevant dissolution. RSC Adv. 2015;5:19844–52.

    Article  CAS  Google Scholar 

  36. Soliman SM, Abdelmalak NS, El-Gazayerly ON, Abdelaziz N. Novel non-ionic surfactant proniosomes for transdermal delivery of lacidipine: optimization using 2(3) factorial design and in vivo evaluation in rabbits. Drug Deliv. 2016;23(5):1608–22.

    Article  CAS  PubMed  Google Scholar 

  37. Sultana S, Bhavna, Iqbal Z, Panda BP, Talegaonkar S, Bhatnagar A, et al. Lacidipine encapsulated gastroretentive microspheres prepared by chemical denaturation for pylorospasm. J Microencapsul. 2009;26(5):385–93.

    Article  CAS  PubMed  Google Scholar 

  38. Mukharya A, Chaudhary S, Mansuri N, Misra AK. Solid-state characterization of lacidipine/PVP K(29/32) solid dispersion primed by solvent co-evaporation. Int J Pharm Investig. 2012;2(2):90–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sun M, Wu C, Fu Q, Di D, Kuang X, Wang C, et al. Solvent-shift strategy to identify suitable polymers to inhibit humidity-induced solid-state crystallization of lacidipine amorphous solid dispersions. Int J Pharm. 2016;503(1–2):238–46.

    Article  CAS  PubMed  Google Scholar 

  40. Shirodkar R, Reddy N, Kumar N, Ramalingayya GV, Mutalik S, Lewis S. Subacute toxicity study of lacidipine nanoformulation. Lat Am J Pharm. 2015;34(8):1526–33.

    CAS  Google Scholar 

  41. Anuradha K, Kumar MS. Development of lacidipine loaded nanostructured lipid carriers (NLCs) for bioavailability enhancement. Int J Pharm Med Res. 2014;2(2):50–7.

    Google Scholar 

  42. Dinda SC, Pand SK. Formulation and in-vitro/in-vivo assessment of enhanced bioavailability of lacidipine using Nanopure technique. Albanian J Pharm Sci. 2014;1:20–5.

    Google Scholar 

  43. Abdelbary G, Makhlouf A. Adoption of polymeric micelles to enhance the oral bioavailability of dexibuprofen: formulation, in-vitro evaluation and in-vivo pharmacokinetic study in healthy human volunteers. Pharm Dev Technol. 2014;19(6):717–27.

    Article  CAS  PubMed  Google Scholar 

  44. Hao J, Gao Y, Zhao J, Zhang J, Li Q, Zhao Z, et al. Preparation and optimization of resveratrol nanosuspensions by antisolvent precipitation using Box-Behnken design. AAPS PharmSciTech. 2015;16(1):118–28.

    Article  CAS  PubMed  Google Scholar 

  45. Tenjarla S, Puranajoti P, Kasina R, Mandal T. Preparation, characterization, and evaluation of miconazole-cyclodextrin complexes for improved oral and topical delivery. J Pharm Sci. 1998;87(4):425–9.

    Article  CAS  PubMed  Google Scholar 

  46. Gonnissen Y, Goncalves SI, De Geest BG, Remon JP, Vervaet C. Process design applied to optimise a directly compressible powder produced via a continuous manufacturing process. Eur J Pharm Biopharm. 2008;68(3):760–70.

    Article  CAS  PubMed  Google Scholar 

  47. Deng J, Huang L, Liu F. Understanding the structure and stability of paclitaxel nanocrystals. Int J Pharm. 2010;390(2):242–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang N, Hsu C, Zhu L, Tseng S, Hsu JP. Influence of metal oxide nanoparticles concentration on their zeta potential. J Colloid Interface Sci. 2013;407:22–8.

    Article  CAS  PubMed  Google Scholar 

  49. Shah B, Kakumanu VK, Bansal AK. Analytical techniques for quantification of amorphous/crystalline phases in pharmaceutical solids. J Pharm Sci. 2006;95(8):1641–65.

    Article  CAS  PubMed  Google Scholar 

  50. Mauludin R, Muller RH, Keck CM. Development of an oral rutin nanocrystal formulation. Int J Pharm. 2009;370(1–2):202–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed R. Fares.

Additional information

Guest Editors: Claudio Salomon, Francisco Goycoolea, and Bruno Moerschbacher

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kassem, M.A.A., ElMeshad, A.N. & Fares, A.R. Enhanced Solubility and Dissolution Rate of Lacidipine Nanosuspension: Formulation Via Antisolvent Sonoprecipitation Technique and Optimization Using Box–Behnken Design. AAPS PharmSciTech 18, 983–996 (2017). https://doi.org/10.1208/s12249-016-0604-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0604-1

Keywords

Navigation