Skip to main content

Advertisement

Log in

The Design of Nanostructured Metronidazole-Loaded HPC/Oxide Xerogel Composites: Influence of the Formulation Parameters on In Vitro Characterisation

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

In this study, oxide and polymer/oxide xerogels with metronidazole were prepared and examined as carriers of drug for the local application to the bone. The nanoporous SiO2–CaO–P2O5 and HPC–SiO2–CaO–P2O5 xerogel materials with different amounts of the polymer [hydroxypropyl cellulose (HPC)] were prepared using the sol–gel technology, and their physicochemical properties were characterised with respect to chemical structure [by Fourier transform infrared spectroscopy (FTIR)], porosity and the specific surface area of solids (BET), crystallinity [by X-ray powder diffraction (XRD)], morphology [by scanning electron microscope (SEM)] and the in vitro release of the metronidazole over time (by UV–vis spectroscopy, in the ultraviolet light region). HPC-modified oxide xerogels as the carriers of drug showed slower release of metronidazole, due to the structure and stronger interactions with drug as compared with the pure oxide xerogel. Kinetic analysis indicated diffusional mechanism of drug release from all xerogel carriers. HPC addition to the oxide material resulted in a decrease in the porosity and improved the bioactive properties of xerogels. Obtained results for xerogel composites suggest that the metronidazole-loaded xerogels could be attractive candidates for local delivery systems particularly to a bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. Ahola M, Kortesuo P, Kangasniemi I, Kiesvaara J, Yli-Urpo AU. Silica xerogel carrier material for controlled release of toremifene citrate. Int J Pharm. 2000;195(1–2):219–27.

    Article  CAS  PubMed  Google Scholar 

  2. Czarnobaj K, Czarnobaj J. Sol–gel processed porous silica carriers for the controlled release of diclofenac diethylamine. J Biomed Mater Res Part B Appl Biomater. 2008;87(1):114–20.

    Article  PubMed  Google Scholar 

  3. Sieminska L, Zerda TW. Diffusion of steroids from sol–gel glass. J Phys Chem. 1996;100(11):4591–7.

    Article  CAS  Google Scholar 

  4. de Gaetano F, Ambrosio L, Raucci MG, Marotta A, Catauro M. Sol–gel processing of drug delivery materials and release kinetics. J Mater Sci Mater In Med. 2005;16(3):261–8.

    Article  CAS  Google Scholar 

  5. Radin S, Falaize S, Lee MH, Ducheyne P. In vitro bioactivity and degradation behavior of silica xerogels intended as controlled release materials. Biomaterials. 2002;23(15):3113–20.

    Article  CAS  PubMed  Google Scholar 

  6. Domingues Z, Cortes M, Gomes T, Diniz H, Gomes J, Faria A, et al. Bioactive glass as a drug delivery system of tetracycline and tetracycline associated with β-cyclodextrin. Biomaterials. 2004;25(2):327–34.

    Article  CAS  PubMed  Google Scholar 

  7. Tsuru K, Hayakawa S, Osaka A. Synthesis of bioactive and porous organic–inorganic hybrids for biomedical applications. J Sol–Gel Sci Tech. 2004;32(1):201–9.

    Article  CAS  Google Scholar 

  8. Schmidt H. Synthesis of bioactive and porous organic–inorganic hybrids for biomedical applications. J Non-Cyst Solids. 1988;100(1–3):5156–64.

    Google Scholar 

  9. Buckley AM, Greenblatt M. The sol–gel preparation of silica gels. J Chem Educ. 1994;71(7):599–602.

    Article  CAS  Google Scholar 

  10. Livage J, Sanchez C. Sol–gel chemistry. J Non-Cyst Solids. 1992;145:11–20.

    Article  CAS  Google Scholar 

  11. Czarnobaj K, Sawicki W. The sol–gel prepared SiO2–CaO–P2O5 composites doped with Metronidazole for application in local delivery systems. Pharm Dev Technol. 2012;17(6):697–704.

    Article  CAS  PubMed  Google Scholar 

  12. Czarnobaj K, Sawicki W. Influence of surfactants on the release behaviour and structural properties of sol–gel derived silica xerogels embedded with metronidazole. Pharm Dev Technol. 2013;18(2):377–83.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang Y, Kim JM, Wu D, Sun Y, Zhao D, Peng S. Sol–gel synthesis of methyl-modified mesoporous materials with dual porosity. J Non-Cyst Solids. 2005;351(8–9):777–84.

    Article  CAS  Google Scholar 

  14. Kortesuo P, Ahola M, Kangas M, Leino T, Laakso S, Vuorilehto L, et al. Alkyl-substituted silica gel as a carrier in the controlled release of dexmedetomidine. J Control Rel. 2001;76(3):227–38.

    Article  CAS  Google Scholar 

  15. Granja PL, Barbosa MA, Pouyegu L, de Jeso B, Rouais F, Baquey C. Cellulose phosphates as biomaterials. Mineralization of chemically modified regenerated cellulose hydrogels. J Mater Sci. 2001;36(9):2163–72.

    Article  CAS  Google Scholar 

  16. Jones D, Woolfson A, Brown A, O’Neill M. Mucoadhesive, syringeable drug delivery systems for controlled application of metronidazole to the periodontal pocket: in vitro release kinetics, syringeability, mechanical and mucoadhesive properties. J Control Rel. 1997;49(1):71–9.

    Article  CAS  Google Scholar 

  17. Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J Biomed Mater Res Part A. 1990;24(6):721–6.

    Article  CAS  Google Scholar 

  18. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone activity? Biomaterials. 2006;27(16):2907–12.

    Article  CAS  PubMed  Google Scholar 

  19. Gross A, Chai CS, Kannangara GS, Ben-Nissan B, Hanley L. Thin hydroxyapatite coatings via sol–gel synthesis. J Mater Sci Mater Med. 1998;9(12):839–43.

    Article  CAS  PubMed  Google Scholar 

  20. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27(17):3413–8.

    Article  CAS  PubMed  Google Scholar 

  21. Al-Oweini R, El-Rassy H. Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si (OR)4 and RSi (OR)3 precursors. J Mol Struct. 2009;919(1–3):140–5.

    Article  CAS  Google Scholar 

  22. Fidalgo A, Ilharco L. Correlation between physical properties and structure of silica xerogels. J Non-Cyst Solids. 2004;347(1–3):128–33.

    Article  CAS  Google Scholar 

  23. Bryans T, Brawner V, Quitevis E. Microstructure and porosity of silica xerogel monoliths prepared by the fast sol–gel method. J Sol–Gel Sci Tech. 2000;17(3):211–6.

    Article  CAS  Google Scholar 

  24. Palazzo B, Iafisco M, Laforgia M, Margiotta N, Natile G, Bianchi CL, et al. Biomimetic hydroxyapatite-drug nanocrystals as potential bane substitutes with antitumor drug delivery properties. Adv Funct Mater. 2007;17(13):2180–8.

    Article  CAS  Google Scholar 

  25. Łączka M, Cholewa-Kowalska K, Kulgawczyk K, Klisch M, Mozgawa W. Structural examinations of gel-derived materials of the CaO–P2O5–SiO2 system. J Mol Struct. 1999;511–512:223–30.

    Google Scholar 

  26. Łączka M, Cholewa K, Łączka-Osyczka A. Organic–inorganic hybrid glasses of selective optical transmission. J Alloys Compd. 1997;248(1–2):42–7.

    Google Scholar 

  27. Li N, Jie Q, Zhu S, Wang R. Preparation and characterization of macroporous sol–gel bioglass. Ceram Int. 2005;31(5):641–6.

    Article  CAS  Google Scholar 

  28. Ibrahim DM, Mostafa AA, Korowash SI. Chemical characterization of some substituted hydroxyapatites. Chem Cent J. 2011;5(1):74–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Böttcher H, Slowik P, Böttcher H, Slowik P, Süβ W. Sol–gel carrier systems for controlled drug delivery. J Sol–Gel Sci Tech. 1998;13(1):277–82.

    Article  Google Scholar 

  30. Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13(2):123–7.

    Article  CAS  PubMed  Google Scholar 

  31. Peppas N. Analysis of Fickian and non-Fickian drug release from polymers. Pharm Acta Helv. 1985;60(4):110–5.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by the Ministry of Science and Higher Education of the Republic of Poland, from the quality-promoting subsidy, under the Leading National Research Centre (KNOW) programme for the years 2012–2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Czarnobaj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Czarnobaj, K. The Design of Nanostructured Metronidazole-Loaded HPC/Oxide Xerogel Composites: Influence of the Formulation Parameters on In Vitro Characterisation. AAPS PharmSciTech 16, 1160–1168 (2015). https://doi.org/10.1208/s12249-015-0310-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-015-0310-4

KEY WORDS

Navigation