Advertisement

AAPS PharmSciTech

, Volume 16, Issue 5, pp 1160–1168 | Cite as

The Design of Nanostructured Metronidazole-Loaded HPC/Oxide Xerogel Composites: Influence of the Formulation Parameters on In Vitro Characterisation

  • Katarzyna Czarnobaj
Research Article

Abstract

In this study, oxide and polymer/oxide xerogels with metronidazole were prepared and examined as carriers of drug for the local application to the bone. The nanoporous SiO2–CaO–P2O5 and HPC–SiO2–CaO–P2O5 xerogel materials with different amounts of the polymer [hydroxypropyl cellulose (HPC)] were prepared using the sol–gel technology, and their physicochemical properties were characterised with respect to chemical structure [by Fourier transform infrared spectroscopy (FTIR)], porosity and the specific surface area of solids (BET), crystallinity [by X-ray powder diffraction (XRD)], morphology [by scanning electron microscope (SEM)] and the in vitro release of the metronidazole over time (by UV–vis spectroscopy, in the ultraviolet light region). HPC-modified oxide xerogels as the carriers of drug showed slower release of metronidazole, due to the structure and stronger interactions with drug as compared with the pure oxide xerogel. Kinetic analysis indicated diffusional mechanism of drug release from all xerogel carriers. HPC addition to the oxide material resulted in a decrease in the porosity and improved the bioactive properties of xerogels. Obtained results for xerogel composites suggest that the metronidazole-loaded xerogels could be attractive candidates for local delivery systems particularly to a bone.

KEY WORDS

drug delivery systems nanostructured composites porous materials 

Notes

Acknowledgments

This project was supported by the Ministry of Science and Higher Education of the Republic of Poland, from the quality-promoting subsidy, under the Leading National Research Centre (KNOW) programme for the years 2012–2017.

REFERENCES

  1. 1.
    Ahola M, Kortesuo P, Kangasniemi I, Kiesvaara J, Yli-Urpo AU. Silica xerogel carrier material for controlled release of toremifene citrate. Int J Pharm. 2000;195(1–2):219–27.CrossRefPubMedGoogle Scholar
  2. 2.
    Czarnobaj K, Czarnobaj J. Sol–gel processed porous silica carriers for the controlled release of diclofenac diethylamine. J Biomed Mater Res Part B Appl Biomater. 2008;87(1):114–20.CrossRefPubMedGoogle Scholar
  3. 3.
    Sieminska L, Zerda TW. Diffusion of steroids from sol–gel glass. J Phys Chem. 1996;100(11):4591–7.CrossRefGoogle Scholar
  4. 4.
    de Gaetano F, Ambrosio L, Raucci MG, Marotta A, Catauro M. Sol–gel processing of drug delivery materials and release kinetics. J Mater Sci Mater In Med. 2005;16(3):261–8.CrossRefGoogle Scholar
  5. 5.
    Radin S, Falaize S, Lee MH, Ducheyne P. In vitro bioactivity and degradation behavior of silica xerogels intended as controlled release materials. Biomaterials. 2002;23(15):3113–20.CrossRefPubMedGoogle Scholar
  6. 6.
    Domingues Z, Cortes M, Gomes T, Diniz H, Gomes J, Faria A, et al. Bioactive glass as a drug delivery system of tetracycline and tetracycline associated with β-cyclodextrin. Biomaterials. 2004;25(2):327–34.CrossRefPubMedGoogle Scholar
  7. 7.
    Tsuru K, Hayakawa S, Osaka A. Synthesis of bioactive and porous organic–inorganic hybrids for biomedical applications. J Sol–Gel Sci Tech. 2004;32(1):201–9.CrossRefGoogle Scholar
  8. 8.
    Schmidt H. Synthesis of bioactive and porous organic–inorganic hybrids for biomedical applications. J Non-Cyst Solids. 1988;100(1–3):5156–64.Google Scholar
  9. 9.
    Buckley AM, Greenblatt M. The sol–gel preparation of silica gels. J Chem Educ. 1994;71(7):599–602.CrossRefGoogle Scholar
  10. 10.
    Livage J, Sanchez C. Sol–gel chemistry. J Non-Cyst Solids. 1992;145:11–20.CrossRefGoogle Scholar
  11. 11.
    Czarnobaj K, Sawicki W. The sol–gel prepared SiO2–CaO–P2O5 composites doped with Metronidazole for application in local delivery systems. Pharm Dev Technol. 2012;17(6):697–704.CrossRefPubMedGoogle Scholar
  12. 12.
    Czarnobaj K, Sawicki W. Influence of surfactants on the release behaviour and structural properties of sol–gel derived silica xerogels embedded with metronidazole. Pharm Dev Technol. 2013;18(2):377–83.CrossRefPubMedGoogle Scholar
  13. 13.
    Zhang Y, Kim JM, Wu D, Sun Y, Zhao D, Peng S. Sol–gel synthesis of methyl-modified mesoporous materials with dual porosity. J Non-Cyst Solids. 2005;351(8–9):777–84.CrossRefGoogle Scholar
  14. 14.
    Kortesuo P, Ahola M, Kangas M, Leino T, Laakso S, Vuorilehto L, et al. Alkyl-substituted silica gel as a carrier in the controlled release of dexmedetomidine. J Control Rel. 2001;76(3):227–38.CrossRefGoogle Scholar
  15. 15.
    Granja PL, Barbosa MA, Pouyegu L, de Jeso B, Rouais F, Baquey C. Cellulose phosphates as biomaterials. Mineralization of chemically modified regenerated cellulose hydrogels. J Mater Sci. 2001;36(9):2163–72.CrossRefGoogle Scholar
  16. 16.
    Jones D, Woolfson A, Brown A, O’Neill M. Mucoadhesive, syringeable drug delivery systems for controlled application of metronidazole to the periodontal pocket: in vitro release kinetics, syringeability, mechanical and mucoadhesive properties. J Control Rel. 1997;49(1):71–9.CrossRefGoogle Scholar
  17. 17.
    Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J Biomed Mater Res Part A. 1990;24(6):721–6.CrossRefGoogle Scholar
  18. 18.
    Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone activity? Biomaterials. 2006;27(16):2907–12.CrossRefPubMedGoogle Scholar
  19. 19.
    Gross A, Chai CS, Kannangara GS, Ben-Nissan B, Hanley L. Thin hydroxyapatite coatings via sol–gel synthesis. J Mater Sci Mater Med. 1998;9(12):839–43.CrossRefPubMedGoogle Scholar
  20. 20.
    Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27(17):3413–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Al-Oweini R, El-Rassy H. Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si (OR)4 and RSi (OR)3 precursors. J Mol Struct. 2009;919(1–3):140–5.CrossRefGoogle Scholar
  22. 22.
    Fidalgo A, Ilharco L. Correlation between physical properties and structure of silica xerogels. J Non-Cyst Solids. 2004;347(1–3):128–33.CrossRefGoogle Scholar
  23. 23.
    Bryans T, Brawner V, Quitevis E. Microstructure and porosity of silica xerogel monoliths prepared by the fast sol–gel method. J Sol–Gel Sci Tech. 2000;17(3):211–6.CrossRefGoogle Scholar
  24. 24.
    Palazzo B, Iafisco M, Laforgia M, Margiotta N, Natile G, Bianchi CL, et al. Biomimetic hydroxyapatite-drug nanocrystals as potential bane substitutes with antitumor drug delivery properties. Adv Funct Mater. 2007;17(13):2180–8.CrossRefGoogle Scholar
  25. 25.
    Łączka M, Cholewa-Kowalska K, Kulgawczyk K, Klisch M, Mozgawa W. Structural examinations of gel-derived materials of the CaO–P2O5–SiO2 system. J Mol Struct. 1999;511–512:223–30.Google Scholar
  26. 26.
    Łączka M, Cholewa K, Łączka-Osyczka A. Organic–inorganic hybrid glasses of selective optical transmission. J Alloys Compd. 1997;248(1–2):42–7.Google Scholar
  27. 27.
    Li N, Jie Q, Zhu S, Wang R. Preparation and characterization of macroporous sol–gel bioglass. Ceram Int. 2005;31(5):641–6.CrossRefGoogle Scholar
  28. 28.
    Ibrahim DM, Mostafa AA, Korowash SI. Chemical characterization of some substituted hydroxyapatites. Chem Cent J. 2011;5(1):74–85.PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Böttcher H, Slowik P, Böttcher H, Slowik P, Süβ W. Sol–gel carrier systems for controlled drug delivery. J Sol–Gel Sci Tech. 1998;13(1):277–82.CrossRefGoogle Scholar
  30. 30.
    Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13(2):123–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Peppas N. Analysis of Fickian and non-Fickian drug release from polymers. Pharm Acta Helv. 1985;60(4):110–5.PubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2015

Authors and Affiliations

  1. 1.Department of Physical ChemistryMedical University of GdańskGdańskPoland

Personalised recommendations