AAPS PharmSciTech

, Volume 15, Issue 6, pp 1468–1475 | Cite as

Liquid Crystalline Systems for Transdermal Delivery of Celecoxib: In Vitro Drug Release and Skin Permeation Studies

  • Éder André Estracanholli
  • Fabíola Silva Garcia Praça
  • Ana Beatriz Cintra
  • Maria Bernadete Riemma Pierre
  • Marilisa Guimarães Lara
Research Article


Liquid crystalline systems of monoolein/water could be a promising approach for the delivery of celecoxib (CXB) to the skin because these systems can sustain drug release, improve drug penetration into the skin layers and minimize side effects. This study evaluated the potential of these systems for the delivery of CXB into the skin based on in vitro drug release and skin permeation studies. The amount of CXB that permeated into and/or was retained in the skin was assayed using an HPLC method. Polarizing light microscopy studies showed that liquid crystalline systems of monoolein/water were formed in the presence of CXB, without any changes in the mesophases. The liquid crystalline systems decreased drug release when compared to control solution. Drug release was independent of the initial water content of the systems and CXB was released from cubic phase systems, irrespective of the initial water content. The systems released the CXB following zero-order release kinetics. In vitro drug permeation studies showed that cubic phase systems allowed drug permeation and retention in the skin layers. Cubic phase systems of monoolein/water may be promising vehicles for the delivery of CXB in/through the skin because it improved CXB skin permeation compared with the control solution.


celecoxib drug delivery systems liquid crystalline system monoolein skin permeation 



The authors thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ) e Universidade de São Paulo (USP), Brazil for supporting this study.

Conflict of interest

The authors report no declarations of interest.


  1. 1.
    Cid YP, Pedrazzi V, Sousa VP, Pierre MBR. In vitro characterization of chitosan gels for buccal delivery of celecoxib: influence of a penetration enhancer. AAPS PharmSciTech. 2012;13:101–11.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Ventura CA, Tommazini S, Falcone A, Gianonne I, Paolino D, Sdrafkakis V, et al. Influence of modified cyclodextrins on solubility and percutaneous absorption of celecoxib through human skin. Int J Pharm. 2006;314:37–45.PubMedCrossRefGoogle Scholar
  3. 3.
    Subramanian N, Ghosal SK, Moulik SP. Enhanced in vitro percutaneous absorption and in vivo anti-inflammatory effect of a selective cyclooxygenase inhibitor using microemulsion. Drug Dev Ind Pharm. 2005;31:405–16.PubMedCrossRefGoogle Scholar
  4. 4.
    Joshi M, Patravale V. Nanostructured lipid carrier (NLC) based gel of celecoxib. Int J Pharm. 2008;346:124–32.PubMedCrossRefGoogle Scholar
  5. 5.
    Shakeel F, Baboota S, Ahuja A, Ali J, Shafiq S. Skin permeation mechanism and bioavailability enhancement of celecoxib from transdermally applied nanoemulsion. J Nanobiotechnol. 2008;6:1–11.CrossRefGoogle Scholar
  6. 6.
    Soliman SM, Malak NSA, El-Gazayerly ON, Rehim AAA. Formulation of microemulsion gel systems for transdermal delivery of celecoxib: in vitro permeation, anti-inflammatory activity and skin irritation tests. Drug Discov Ther. 2010;4:459–71.PubMedGoogle Scholar
  7. 7.
    Sharma PK, Bajpai M. Enhancement of solubility and stability of Celecoxib using microemulsion based topical formulation. J Pharm Res. 2011;4:2216–20.Google Scholar
  8. 8.
    Quiñones OG, Mata Dos Santos HA, Kibwila DM, Leitão A, Dos Santos Pyrrho A, Pádua MD et al. In vitro and in vivo influence of penetration enhancers in the topical application of celecoxib. Drug Dev Ind Pharm 2013. doi: 10.3109/03639045.2013.809731.
  9. 9.
    Bender J, Jarvoll P, Nydén M, Engstron S. Structure and dynamics of a sponge phase in the methyl σ-aminolevulinate/monoolein/water/propylene glycol system. J Colloid Interface Sci. 2008;317:577–84.PubMedCrossRefGoogle Scholar
  10. 10.
    Yariv D, Efrat R, Libster D, Aserin A, Garti N. In vitro permeation of diclofenac salts from lyotropic liquid crystalline systems. Colloids Surf B: Biointerfaces. 2010;78:185–92.PubMedCrossRefGoogle Scholar
  11. 11.
    Praça FS, Bentley MV, Lara MG, Pierre MB. Celecoxib determination in different layers of skin by a newly developed and validated HPLC-UV. Biomed Chromatogr. 2011;25:1237–44.PubMedCrossRefGoogle Scholar
  12. 12.
    Lopes LB, Ferreira DA, de Paula D, Garcia MTJ, Thomazini JA, Fantini MCA, et al. Reverse hexagonal phase nanodispersion of monoolein and oleic acid for topical delivery of peptides: in vitro and in vivo skin penetration of cyclosporine A. Pharm Res. 2006;23:1332–42.PubMedCrossRefGoogle Scholar
  13. 13.
    Yener G, Gonullu U, Uner M, Degim T, Araman A. Effect of vehicles and penetration enhancers on the in vitro percutaneous absorption of celecoxib through human skin. Pharmazie. 2003;58:330–3.PubMedGoogle Scholar
  14. 14.
    Shah JC, Sadhale Y, Chilukuri DM. Cubic phase gels as drug delivery systems. Adv Drug Deliv Rev. 2001;47:229–50.PubMedCrossRefGoogle Scholar
  15. 15.
    Engström S, Engström L. Phase behaviour of the lidocaine-monoolein-water system. Int J Pharm. 1992;79:113–22.CrossRefGoogle Scholar
  16. 16.
    Kumar MK, Shah MH, Ketkar A, Mahadik KR, Paradkar A. Effect of drug solubility and different excipients on floating behavior and release from glyceryl monooleate matrices. Int J Pharm. 2004;272:151–60.CrossRefGoogle Scholar
  17. 17.
    Steluti R, De Rosa FS, Collett J, Tedesco AC, Bentley MVLB. Topical glycerol monooleate/propylene glycol formulations enhance 5-aminolevulinic acid in vitro skin delivery and in vivo protophorphyrin IX accumulation in hairless mouse skin. Eur J Pharm Biopharm. 2005;60:439–44.PubMedCrossRefGoogle Scholar
  18. 18.
    Caboi F, Amico GS, Pitzalis P, Monduzzi M, Nylander T, Larson K. Addition of hydrophilic and lipophilic compounds of biological relevance to the monoolein/water system. I. Phase behavior. Chem Phys Lipids. 2001;109:47–62.PubMedCrossRefGoogle Scholar
  19. 19.
    Boyd BJ, Whittaker DV, Khoo SM, Davey G. Lyotropic liquid crystalline phases formed from glycerate surfactants as sustained release drug delivery systems. Int J Pharm. 2006;309:218–26.PubMedCrossRefGoogle Scholar
  20. 20.
    Chang CM, Bodmeier R. Effect of dissolution media and additives on the drug release from cubic phase delivery systems. J Control Release. 1997;46:215–22.CrossRefGoogle Scholar
  21. 21.
    Shah MH, Paradkar A. Effect of HLB of additives on the properties and drug release from the glyceryl monooleate matrices. Eur J Pharm Biopharm. 2007;67:166–74.PubMedCrossRefGoogle Scholar
  22. 22.
    Ganen-Quintanar A, Quintanar-Guerreiro D, Buri P. Monoolein: a review of the pharmaceutical applications. Drug Dev Ind Pharm. 2000;26:809–20.CrossRefGoogle Scholar
  23. 23.
    Guo C, Wang J, Cao F, Lee RJ, Zhai G. Lyotropic liquid crystal systems in drug delivery. Drug Discov Today. 2010;15:1032–40.PubMedCrossRefGoogle Scholar
  24. 24.
    Fong C, Le T, Drummond CJ. Lyotropic liquid crystal engineering-ordered nanostructured small molecule amphiphile self-assembly materials by design. Chem Soc Rev. 2012;41:1297–322.PubMedCrossRefGoogle Scholar
  25. 25.
    Sallam A, Khalil E, Ibrahim H, Freij I. Formulation of an oral dosage form utilizing the properties of cubic liquid crystalline phases of glyceryl monooleate. Eur J Pharm Biopharm. 2002;53:343–52.PubMedCrossRefGoogle Scholar
  26. 26.
    Costa-Balogh FOC, Sparr E, Souza JJS, Paes AC. Drug release from lipid liquid crystalline phases: relation with phase behavior. Drug Dev Ind Pharm. 2010;36:470–81.PubMedCrossRefGoogle Scholar
  27. 27.
    Simonetti LDD, Gelfuso GM, Barbosa JCR, Lopez RFV. Assessment of the percutaneous penetration of cisplatin: the effect of monoolein and the drug skin penetration pathway. Eur J Pharm Biopharm. 2009;73:90–4.PubMedCrossRefGoogle Scholar
  28. 28.
    Lopes LB, Speretta FFF, Bentley MVLB. Enhancement of skin penetration of vitamin K using monoolein-based liquid crystalline systems. Eur J Pharm Sci. 2007;32:209–15.PubMedCrossRefGoogle Scholar
  29. 29.
    Carr MG, Corish J, Corrigan OI. Drug delivery from a liquid crystalline base across visking and human stratum corneum. Int J Pharm. 1997;157:35–42.CrossRefGoogle Scholar
  30. 30.
    Clogston J, Rathman J, Tomasko D, Walker H, Caffrey M. Phase behavior of a monoacylglycerol (Myverol 18-99K)/water system. Chem Phys Lipids. 2000;107:191–220.PubMedCrossRefGoogle Scholar
  31. 31.
    Burrows R, Collett JH, Attwood D. The release of drugs from monoglyceride-water liquid crystalline phases. Int J Pharm. 1994;111:283–93.CrossRefGoogle Scholar
  32. 32.
    Rigter PL, Peppas NA. A simple equation for description of solute release. II. Fickian and anomalous release from swellable devices. J Control Release. 1987;5:37–42.CrossRefGoogle Scholar
  33. 33.
    Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15:25–35.CrossRefGoogle Scholar
  34. 34.
    Chang CM, Bodmeier R. Low viscosity monoglyceride-based drug delivery systems transforming into a highly viscous cubic phase. Int J Pharm. 1998;173:51–60.CrossRefGoogle Scholar
  35. 35.
    Phan S, Fong WK, Kirby N, Hanley T, Boyd BJ. Evaluating the link between self-assembled mesophase structure and drug release. Int J Pharm. 2011;421:176–82.PubMedCrossRefGoogle Scholar
  36. 36.
    Norling T, Lading P, Engströn S, Larsson K, Krog N, Nissen SS. Formulation of a drug delivery system based on a mixture of monoglycerides and triglycerides for use in the treatment of periodontal disease. J Clin Periodontol. 1992;19:687–92.PubMedCrossRefGoogle Scholar
  37. 37.
    Nielsen LS, Schubert L, Hansen J. Bioadhesive drug delivery systems. I. Characterisation of mucoadhesive properties of systems based on glyceryl mono-oleate and glyceryl monolinoleate. Eur J Pharm Sci. 1998;6:231–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Dantona P, Parker Jr WO, Zanirato MC, Esposito E, Nastruzzi C. Rheologic and NMR characterization of monoglyceride-based formulations. J Biomed Mater Res. 2000;52:40–52.CrossRefGoogle Scholar
  39. 39.
    Alfons K, Engström S. Drug compatibility with the sponge phases formed in monoolein, water and propyleneglycol or poly (ethylene glycol). J Pharm Sci. 1998;87:1527–30.PubMedCrossRefGoogle Scholar
  40. 40.
    Chang CM, Bodmeier R. Swelling of and drug release from monoglyceride-based drug delivery systems. J Pharm Sci. 1997;86:747–52.PubMedCrossRefGoogle Scholar
  41. 41.
    Geraghty PB, Attwood D, Collett JH, Dandiker Y. The in vitro release of some antimuscarinic drugs from monoolein/water lyotropic liquid crystalline gels. Pharm Res. 1996;13:1265–71.PubMedCrossRefGoogle Scholar
  42. 42.
    Rizwan SB, Hanley T, Boyd BJ, Rades T, Hook S. Liquid crystalline systems of phytantriol and glyceryl monooleate containing a hydrophilic protein: characterization, swelling and release kinetics. J Pharm Sci. 2009;98:4191–204.PubMedCrossRefGoogle Scholar
  43. 43.
    Lee J, Kellaway IW. In vitro peptide release from liquid crystalline buccal delivery systems. Int J Pharm. 2000;195:29–33.PubMedCrossRefGoogle Scholar
  44. 44.
    Lara MG, Bentley MV, Collett JH. In vitro drug release mechanism and drug loading studies of cubic phase gels. Int J Pharm. 2005;293:241–50.PubMedCrossRefGoogle Scholar
  45. 45.
    Bertram U, Bodmeier R. Parameters affecting the drug release from in situ gelling nasal inserts. Eur J Pharm Biopharm. 2006;63:310–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Allababidi S, Shah JC. Kinetics and mechanism of release from glyceryl monostearate-based implants: evaluation of release in a gel simulating in vivo implantation. J Pharm Sci. 1998;87:738–44.PubMedCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2014

Authors and Affiliations

  • Éder André Estracanholli
    • 1
  • Fabíola Silva Garcia Praça
    • 1
  • Ana Beatriz Cintra
    • 1
  • Maria Bernadete Riemma Pierre
    • 2
  • Marilisa Guimarães Lara
    • 1
  1. 1.School of Pharmaceutical Sciences of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil
  2. 2.School of PharmacyFederal University of Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations