AAPS PharmSciTech

, Volume 15, Issue 5, pp 1189–1196 | Cite as

A 5,7-Dimethoxyflavone/Hydroxypropyl-β-Cyclodextrin Inclusion Complex with Anti-Butyrylcholinesterase Activity

  • Supachai Songngam
  • Mongkol Sukwattanasinitt
  • Krisana Siralertmukul
  • Pattara Sawasdee
Research Article


This study aimed to improve the water solubility of 5,7-dimethoxyflavone (5,7-DMF) isolated from Kaempferia parviflora by complexation with 2-hydroxypropyl-β-cyclodextrin (HPβ-CD). The phase solubility profile of 5,7-DMF in the presence of HPβ-CD was classified as AL-type and indicated a 1:1 mole ratio. Differential scanning colorimetry, X-ray diffraction, NMR and SEM analyses supported the formation of a 5,7-DMF/HPβ-CD inclusion complex involving the A ring of 5,7-DMF inside the HPβ-CD cavity. This is the first example of CD inclusion with the A ring of non-hydroxyl flavones. The stability and binding constants of the complexes were determined using the phase solubility and UV-vis absorption spectroscopy, respectively. The water solubility of 5,7-DMF was increased 361.8-fold by complexation with HPβ-CD and overcame the precipitation problem observed in aqueous buffers, such as during in vitro anti-butyrylcholinesterase activity assays. The 1:1 mole ratio of the 5,7-DMF/HPβ-CD complex showed a 2.7-fold higher butyrylcholinesterase inhibitory activity (in terms of the IC50 value) compared to the non-complexed compound.


5,7-dimethoxyflavone butyrylcholinesterase inhibitory activity hydroxypropyl-β-cyclodextrin inclusion complex water solubility 



This work was financially supported by the Higher Education Research Promotion and National Research University Project of Thailand, the Office of the Higher Education Commission (FW645A), National Research University project of CHE(AM1077I), the Special Task Force for Activating Research (STAR) from the Centenary Academic Development Project, Chulalongkorn University, and the Program of Center of Excellence Network from Nanotechnology Center (NANOTEC), NSTDA, Ministry of Science and Technology, Thailand. The authors are also grateful for English corrections by Robert Butcher of the Publication Counseling Unit, Faculty of Science, Chulalongkorn University.

Supplementary material

12249_2014_157_MOESM1_ESM.docx (591 kb)
ESM 1 (DOCX 591 kb)


  1. 1.
    Sawasdee P, Sabphon C, Sitthiwongwanit D, Kokpol U. Anti-cholinesterase activity of 7-methoxyflavones isolated from Kaempferia parviflora. Phytother Res. 2009;23(12):1792–4.PubMedCrossRefGoogle Scholar
  2. 2.
    Sae-Wong C, Tansakul P, Tewtrakul S. Anti-inflammatory mechanism of Kaempferia parviflora in murine macrophage cells (RAW 264.7) and in experimental animals. J Ethnopharmacol. 2009;124(3):576–80.PubMedCrossRefGoogle Scholar
  3. 3.
    Azuma T, Kayano SI, Matsumura Y, Konishi Y, Tanaka Y, Kikuzaki H. Antimutagenic and α-glucosidase inhibitory effects of constituents from Kaempferia parviflora. Food Chem. 2011;125(2):471–5.CrossRefGoogle Scholar
  4. 4.
    Chaichanawongsaroj N, Amonyingcharoen S, Saifah E, Poovorawan Y. The effects of Kaempferia parviflora on antiinternalization activity of Helicobacter pylori to HEp-2 cells. Afr J Biotechnol. 2010;9(30):4796–801.Google Scholar
  5. 5.
    Wattanathorn J, Pangphukiew P, Muchimapura S, Sripanidkulchai K, Sripanidkulchai B. Aphrodisiac activity of Kaempferia parviflora. Am J Agric Biol Sci. 2012;7(2):114–20.CrossRefGoogle Scholar
  6. 6.
    Temkitthawon P, Hinds TR, Beavo JA, Viyoch J, Suwanborirux K, Pongamornkul W, et al. Kaempferia parviflora, a plant used in traditional medicine to enhance sexual performance contains large amounts of low affinity PDE5 inhibitors. J Ethnopharmacol. 2011;137(3):1437–41.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Sae-Wong C, Matsuda H, Tewtrakul S, Tansakul P, Nakamura S, Nomura Y, et al. Suppressive effects of methoxyflavonoids isolated from Kaempferia parviflora on inducible nitric oxide synthase (iNOS) expression in RAW 264.7 cells. J Ethnopharmacol. 2011;136(3):488–95.PubMedCrossRefGoogle Scholar
  8. 8.
    Tep-Areenan P, Sawasdee P, Randall M. Possible mechanisms of vasorelaxation for 5,7-dimethoxyflavone from Kaempferia parviflora in the rat aorta. Phytother Res. 2010;24(10):1520–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Wen X, Walle UK, Walle T. 5,7-Dimethoxyflavone downregulates CYP1A1 expression and benzo[a]pyrene-induced DNA binding in Hep G2 cells. Carcinogenesis. 2005;26(4):803–9.PubMedCrossRefGoogle Scholar
  10. 10.
    An G, Wu F, Morris ME. 5,7-Dimethoxyflavone and multiple flavonoids in combination alter the ABCG2-mediated tissue distribution of mitoxantrone in mice. Pharm Res. 2011;28(5):1090–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Walle T, Ta N, Kawamori T, Wen X, Tsuji PA, Walle UK. Cancer chemopreventive properties of orally bioavailable flavonoids-Methylated versus unmethylated flavones. Biochem Pharmacol. 2007;73(9):1288–96.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Yang B, Lin J, Chen Y, Liu Y. Artemether/hydroxypropyl-β-cyclodextrin host-guest system: characterization, phase-solubility and inclusion mode. Bioorg Med Chem. 2009;17(17):6311–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Dreassi E, Zizzari AT, Mori M, Filippi I, Belfiore A, Naldini A, et al. 2-Hydroxypropyl-β-cyclodextrin strongly improves water solubility and anti-proliferative activity of pyrazolo[3,4-d]pyrimidines Src-Abl dual inhibitors. Eur J Med Chem. 2010;45(12):5958–64.PubMedCrossRefGoogle Scholar
  14. 14.
    Pescitelli G, Bilia AR, Bergonzi MC, Vincieri FF, Di Bari L. Cyclodextrins as carriers for kavalactones in aqueous media: spectroscopic characterization of (S)-7,8-dihydrokavain and β-cyclodextrin inclusion complex. J Pharm Biomed Anal. 2010;52(4):479–83.PubMedCrossRefGoogle Scholar
  15. 15.
    Yang LJ, Chen W, Ma SX, Gao YT, Huang R, Yan SJ, et al. Host-guest system of taxifolin and native cyclodextrin or its derivative: preparation, characterization, inclusion mode, and solubilization. Carbohyd Polym. 2011;85(3):629–37.CrossRefGoogle Scholar
  16. 16.
    Loftsson T, Duchêne D. Cyclodextrins and their pharmaceutical applications. Int J Pharm. 2007;329(1–2):1–11.PubMedCrossRefGoogle Scholar
  17. 17.
    Cannavà C, Crupi V, Ficarra P, Guardo M, Majolino D, Mazzaglia A, et al. Physico-chemical characterization of an amphiphilic cyclodextrin/genistein complex. J Pharm Biomed Anal. 2010;51(5):1064–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Mercader-Ros MT, Lucas-Abellán C, Fortea MI, Gabaldón JA, Núñez-Delicado E. Effect of HP-β-cyclodextrins complexation on the antioxidant activity of flavonols. Food Chem. 2010;118(3):769–73.CrossRefGoogle Scholar
  19. 19.
    Ma SX, Chen W, Yang XD, Zhang N, Wang SJ, Liu L, et al. Alpinetin/hydroxypropyl-β-cyclodextrin host-guest system: preparation, characterization, inclusion mode, solubilization and stability. J Pharm Biomed Anal. 2012;67–68:193–200.PubMedCrossRefGoogle Scholar
  20. 20.
    Mekjaruskul C, Yang YT, Leed MGD, Sadgrove MP, Jay M, Sripanidkulchai B. Novel formulation strategies for enhancing oral delivery of methoxyflavones in Kaempferia parviflora by SMEDDS or complexation with 2-hydroxypropyl-β-cyclodextrin. Int J Pharm. 2013;445(1–2):1–11.PubMedCrossRefGoogle Scholar
  21. 21.
    Higuchi T, Connors K. Phase solubility techniques. Adv Anal Chem Instrum. 1965;4:117–212.Google Scholar
  22. 22.
    Job P. Job’s method of continuous variation. Ann Chim. 1928;9:113–203.Google Scholar
  23. 23.
    Negi JS, Singh S. Spectroscopic investigation on the inclusion complex formation between amisulpride and γ-cyclodextrin. Carbohyd Polym. 2013;92(2):1835–43.CrossRefGoogle Scholar
  24. 24.
    Sermboonpaisarn T, Sawasdee P. Potent and selective butyrylcholinesterase inhibitors from Ficus foveolata. Fitoterapia. 2012;83(4):780–4.PubMedCrossRefGoogle Scholar
  25. 25.
    de Araújo MV, Vieira EK, Lázaro GS, de Souza Conegero L, Ferreira OP, Almeida LE, et al. Inclusion complexes of pyrimethamine in 2-hydroxypropyl-β-cyclodextrin: characterization, phase solubility and molecular modelling. Bioorg Med Chem. 2007;15(17):5752–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Veiga FJB, Fernandes CM, Carvalho RA, Geraldes CF. Molecular Modelling and 1H-NMR: Ultimate tools for the investigation of tolbutamide: β-cyclodextrin and tolbutamide: hydroxypropyl-β -cyclodextrin complexes. Chem Pharm Bull. 2001;49(10):1251–6.PubMedCrossRefGoogle Scholar
  27. 27.
    Greig NH, Lahiri DK, Sambamurti K. Butyrylcholinesterase: an important new target in Alzheimer’s disease therapy. Int Psychogeriatr. 2002;14(1):77–91.PubMedCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2014

Authors and Affiliations

  • Supachai Songngam
    • 1
  • Mongkol Sukwattanasinitt
    • 2
  • Krisana Siralertmukul
    • 3
  • Pattara Sawasdee
    • 2
  1. 1.Petrochemical and Polymer Science Program, Faculty of ScienceChulalongkorn UniversityBangkokThailand
  2. 2.Department of Chemistry, Faculty of ScienceChulalongkorn University and Nanotec-CU Center of Excellence on Food and AgricultureBangkokThailand
  3. 3.Metallurgy and Materials Science Research InstituteChulalongkorn UniversityBangkokThailand

Personalised recommendations