AAPS PharmSciTech

, Volume 15, Issue 5, pp 1197–1208 | Cite as

Encapsulation of Sorbitan Ester-Based Organogels in Alginate Microparticles

  • Sai S. Sagiri
  • Kunal Pal
  • Piyali Basak
  • Usman Ali Rana
  • Imran Shakir
  • Arfat Anis
Research Article


Leaching of the internal apolar phase from the biopolymeric microparticles during storage is a great concern as it undoes the beneficial effects of encapsulation. In this paper, a novel formulation was prepared by encapsulating the sunflower oil-based organogels in alginate microparticles. Salicylic acid and metronidazole were used as the model drugs. The microparticles were prepared by double emulsion methodology. Physico-chemical characterization of the microparticles was done by microscopy, FTIR, XRD, and DSC studies. Oil leaching studies, biocompatibility, mucoadhesivity, in vitro drug release, and the antimicrobial efficiency of the microparticles were also performed. The microparticles were found to be spherical in shape. Gelation of the sunflower oil prevented leaching of the internal phase from the microparticles. Release of drugs from the microparticles followed Fickian kinetics and non-Fickian kinetics in gastric and intestinal environments, respectively. Microparticles showed good antimicrobial activity against both Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria. The results suggested that the developed formulations hold promise to carry oils without leakage of the internal phase. Encapsulation of organogels within the microparticles has improved the drug entrapment efficiency and improved characteristics for controlled delivery applications.


alginate drug delivery leaching microparticles organogels 



The funds leveraged from the project (SR/FT/LS-171/2009), sanctioned by the Science and Engineering Research Board (SERB), Govt. of India are hereby acknowledged. Authors are thankful to the National Institute of Technology-Rourkela (NIT-R) for providing the instrumental facilities. Sai S. Sagiri is thankful for the scholarship provided by the NIT-R for his doctoral studies. The authors would like to extend their sincere appreciation to the Deanship of Scientific Research (DSR) at the King Saud University for extending the instrumental support for this research through the Research Group Project No. RGP-VPP-345.

Supplementary material

12249_2014_147_MOESM1_ESM.doc (1.2 mb)
ESM 1 (DOC 1,244 kb)


  1. 1.
    Chan LW, Lee HY, Heng PWS. Production of alginate microspheres by internal gelation using an emulsification method. Int J Pharm. 2002;242(1–2):259–62. doi: 10.1016/S0378-5173(02)00170-9.PubMedCrossRefGoogle Scholar
  2. 2.
    Sansone F, Mencherini T, Picerno P, d’Amore M, Aquino RP, Lauro MR. Maltodextrin/pectin microparticles by spray drying as carrier for nutraceutical extracts. J Food Eng. 2011;105(3):468–76.CrossRefGoogle Scholar
  3. 3.
    Sansukcharearnpon A, Wanichwecharungruang S, Leepipatpaiboon N, Kerdcharoen T, Arayachukeat S. High loading fragrance encapsulation based on a polymer-blend: preparation and release behavior. Int J Pharm. 2010;391(1):267–73.PubMedCrossRefGoogle Scholar
  4. 4.
    Cocero MJ, Martín Á, Mattea F, Varona S. Encapsulation and co-precipitation processes with supercritical fluids: fundamentals and applications. J Supercrit Fluids. 2009;47(3):546–55.CrossRefGoogle Scholar
  5. 5.
    Sagiri SS, Behera B, Sudheep T, Pal K. Effect of composition on the properties of tween-80–span-80-based organogels. Des Monomers Polym. 2012;15(3):253–73. doi: 10.1163/156855511X615669.CrossRefGoogle Scholar
  6. 6.
    Pouton CW, Porter CJ. Formulation of lipid-based delivery systems for oral administration: materials, methods and strategies. Adv Drug Deliv Rev. 2008;60(6):625–37.PubMedCrossRefGoogle Scholar
  7. 7.
    Peshkovsky AS, Peshkovsky SL, Bystryak S. Scalable high-power ultrasonic technology for the production of translucent nanoemulsions. Chem Eng Process Process Intensif. 2013;69:77–82.CrossRefGoogle Scholar
  8. 8.
    Sagiri SS, Sethy J, Pal K, Banerjee I, Pramanik K, Maiti TK. Encapsulation of vegetable organogels for controlled delivery applications. Des Monomers Polym. 2012;16(4):366–376. doi: 10.1080/15685551.2012.747154.
  9. 9.
    Simonoska Crcarevska M, Glavas Dodov M, Goracinova K. Chitosan coated Ca–alginate microparticles loaded with budesonide for delivery to the inflamed colonic mucosa. Eur J Pharm Biopharm. 2008;68(3):565–78. doi: 10.1016/j.ejpb.2007.06.007.PubMedCrossRefGoogle Scholar
  10. 10.
    Bordenave N, Janaswamy S, Yao Y. Influence of glucan structure on the swelling and leaching properties of starch microparticles. Carbohydr Polym. 2014;103:234–43.PubMedCrossRefGoogle Scholar
  11. 11.
    Kulkarni AR, Soppimath KS, Aminabhavi TM, Rudzinski WE. In-vitro release kinetics of cefadroxil-loaded sodium alginate interpenetrating network beads. Eur J Pharm Biopharm. 2001;51(2):127–33.PubMedCrossRefGoogle Scholar
  12. 12.
    Meerloo J, Kaspers GL, Cloos J. Cell sensitivity assays: the MTT assay. In: Cree IA, editor. Cancer cell culture. Humana Press; 2011. p. 237–45.Google Scholar
  13. 13.
    Martins S, Sarmento B, Souto EB, Ferreira DC. Insulin-loaded alginate microspheres for oral delivery—effect of polysaccharide reinforcement on physicochemical properties and release profile. Carbohydr Polym. 2007;69(4):725–31. doi: 10.1016/j.carbpol.2007.02.012.CrossRefGoogle Scholar
  14. 14.
    Gavini E, Sanna V, Sharma R, Juliano C, Usai M, Marchetti M, et al. Solid lipid microparticles (SLM) containing juniper oil as anti-acne topical carriers: preliminary studies. Pharm Dev Technol. 2005;10(4):479–87. doi: 10.1080/10837450500299727.PubMedCrossRefGoogle Scholar
  15. 15.
    Maji TK, Baruah I, Dube S, Hussain MR. Microencapsulation of Zanthoxylum limonella oil (ZLO) in glutaraldehyde crosslinked gelatin for mosquito repellent application. Bioresour Technol. 2007;98(4):840–4. doi: 10.1016/j.biortech.2006.03.005.PubMedCrossRefGoogle Scholar
  16. 16.
    Behera B, Sagiri SS, Pal K, Srivastava A. Modulating the physical properties of sunflower oil and sorbitan monopalmitate-based organogels. J Appl Polym Sci. 2013;127(6):4910–7.CrossRefGoogle Scholar
  17. 17.
    Parashar BN, Mittal R. Elements of manufacturing processes. New Delhi: PHI Learning Pvt, Ltd.; 2002.Google Scholar
  18. 18.
    Dong Z, Wang Q, Du Y. Alginate/gelatin blend films and their properties for drug controlled release. J Membr Sci. 2006;280(1–2):37–44.CrossRefGoogle Scholar
  19. 19.
    Tam SK, Dusseault J, Polizu S, Ménard M, Hallé J-P, Yahia LH. Physicochemical model of alginate–poly-l-lysine microcapsules defined at the micrometric/nanometric scale using ATR-FTIR, XPS, and ToF-SIMS. Biomaterials. 2005;26(34):6950–61.PubMedCrossRefGoogle Scholar
  20. 20.
    Jia-hui Y, Yu-min D, Hua Z. Blend films of chitosan-gelatin. Wuhan Univ J Nat Sci. 1999;4(4):476.CrossRefGoogle Scholar
  21. 21.
    Coates J. Interpretation of infrared spectra, a practical approach. Encyclopedia of analytical chemistry. Chichester: Wiley; 2006.Google Scholar
  22. 22.
    Vaidya A, Jain S, Agrawal RK, Jain SK. Pectin–metronidazole prodrug bearing microspheres for colon targeting. J Saudi Chem Soc. doi: 10.1016/j.jscs.2012.03.001.
  23. 23.
    Suzuki M, Nakajima Y, Yumoto M, Kimura M, Shirai H, Hanabusa K. Effects of hydrogen bonding and van der Waals interactions on organogelation using designed low-molecular-weight gelators and gel formation at room temperature. Langmuir. 2003;19(21):8622–4.CrossRefGoogle Scholar
  24. 24.
    Ramesh Babu V, Sairam M, Hosamani KM, Aminabhavi TM. Preparation of sodium alginate–methylcellulose blend microspheres for controlled release of nifedipine. Carbohydr Polym. 2007;69(2):241–50.CrossRefGoogle Scholar
  25. 25.
    Ostrowska-Czubenko J, Gierszewska-Drużyńska M. Effect of ionic crosslinking on the water state in hydrogel chitosan membranes. Carbohydr Polym. 2009;77(3):590–8.CrossRefGoogle Scholar
  26. 26.
    Yamashita S, Kataoka M, Higashino H, Sakuma S, Sakamoto T, Uchimaru H, et al. Measurement of drug concentration in the stomach after intragastric administration of drug solution to healthy volunteers: analysis of intragastric fluid dynamics and drug absorption. Pharm Res. 2013;30(4):951–958.Google Scholar
  27. 27.
    Radin S, Chen T, Ducheyne P. The controlled release of drugs from emulsified, sol gel processed silica microspheres. Biomaterials. 2009;30(5):850–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Cui J-H, Goh J-S, Kim P-H, Choi S-H, Lee B-J. Survival and stability of bifidobacteria loaded in alginate poly-l-lysine microparticles. Int J Pharm. 2000;210(1–2):51–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Pasparakis G, Bouropoulos N. Swelling studies and in vitro release of verapamil from calcium alginate and calcium alginate–chitosan beads. Int J Pharm. 2006;323(1–2):34–42. doi: 10.1016/j.ijpharm.2006.05.054.PubMedCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2014

Authors and Affiliations

  • Sai S. Sagiri
    • 1
  • Kunal Pal
    • 1
  • Piyali Basak
    • 2
  • Usman Ali Rana
    • 3
  • Imran Shakir
    • 3
  • Arfat Anis
    • 4
  1. 1.Department of Biotechnology and Medical EngineeringNational Institute of TechnologyRourkelaIndia
  2. 2.School of Bioscience & EngineeringJadavpur UniversityKolkataIndia
  3. 3.Deanship of Scientific Research, College of EngineeringKing Saud UniversityRiyadhSaudi Arabia
  4. 4.Department of Chemical EngineeringKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations