Skip to main content

Evaluation of Poly(2-Ethyl-2-Oxazoline) Containing Copolymer Networks of Varied Composition as Sustained Metoprolol Tartrate Delivery Systems

Abstract

Segmented copolymer networks (SCN) based on poly(2-ethyl-2-oxazoline) and containing 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, and/or methyl methacrylate segments have been evaluated as potential sustained release systems of the water soluble cardioselective β-blocker metoprolol tartrate. The structure and properties of the drug carriers were investigated by differential scanning calorimetry, attenuated total reflectance Fourier transform infrared spectroscopy, scanning electron microscopy, and atomic force microscopy. Swelling kinetics of SCNs in various media was followed, and the conditions for effective MT loading were specified. MT-loaded SCNs with drug content up to 80 wt.% were produced. The release kinetics of metoprolol tartrate from the systems was studied and it was shown that the conetworks of different structure and composition are able to sustain the metoprolol tartrate release without additional excipients.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Kadajji VG, Betageri GV. Water soluble polymers for pharmaceutical applications. Polymers. 2011;3:1972–2009.

    CAS  Article  Google Scholar 

  2. Kelly AM, Wiesbrock F. Strategies for the synthesis of poly(2-Oxazoline)-based hydrogels. Macromol Rapid Commun. 2012;33:1632–47.

    CAS  PubMed  Article  Google Scholar 

  3. Bhadra D, Bahdra S, Jain P, Jain NK. Pegnology: a review of PEG-ylated systems. Pharmazie. 2002;57:5–29.

    CAS  PubMed  Google Scholar 

  4. Pasut G, Veronese FM. Polymer drug conjugation, recent achievements and general strategies. Prog Polym Sci. 2007;32:933–61.

    CAS  Article  Google Scholar 

  5. Allen TM, Cullis PR. Drug delivery systems: Entering the mainstream. Science. 2004;303:1818–22.

    CAS  PubMed  Article  Google Scholar 

  6. Forster A, Hempenstall J, Rades T. Characterization of glass solutions of poorly water-soluble drugs produced by melt extrusion with hydrophilic amorphous polymers. J Pharm Pharmacol. 2001;53:303–15.

    CAS  PubMed  Article  Google Scholar 

  7. Sairam M, Babu VR, Rao KSVK, Aminabhavi TM. Poly(methylmethacrylate)-poly(vinyl pyrrolidone) microspheres as drug delivery systems: Indomethacin/cefadroxil loading and in vitro release study. J Appl Polym Sci. 2007;104(3):1860–5.

    CAS  Article  Google Scholar 

  8. Kayal S, Ramanujan RV. Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery. Mater Sci Eng C. 2010;30:484–90.

    CAS  Article  Google Scholar 

  9. Peppas NA, Mongia NK. Ultrapure poly(viny1alcohol) hydrogels with mucoadhesive drug delivery characteristics. Eur J Pharm Biopharm. 1997;43:51–8.

    CAS  Article  Google Scholar 

  10. Ray D, Mohapatra DK, Mohapatra RK, Mohanta GP, Sahoo PK. Synthesis and colon-specific drug delivery of a poly(acrylic acid-co-acrylamide)/MBA nanosized hydrogel. J Biomater Sci Polym Ed. 2008;19(11):1487–502.

    CAS  PubMed  Article  Google Scholar 

  11. Hu Y, Jiang X, Ding Y, Ge H, Yuan Y, Yang C. Synthesis and characterization of chitosan–poly(acrylic acid) nanoparticles. Biomaterials. 2002;23:3193–201.

    CAS  PubMed  Article  Google Scholar 

  12. Liu J, Pang Y, Huang W, Zhu Z, Zhu X, Zhou Y, et al. Redox-responsive polyphosphate nanosized assemblies: a smart drug delivery platform for cancer therapy. Biomacromolecules. 2011;12:2407–15.

    CAS  PubMed  Article  Google Scholar 

  13. Pencheva I, Bogomilova A, Koseva N, Obreshkova D, Troev K. HPLC study on the stability of bendamustine hydrochloride immobilized onto polyphosphoesters. J Pharm Biomed Anal. 2008;48:1143–50.

    CAS  PubMed  Article  Google Scholar 

  14. Adams N, Schubert US. Poly(2-oxazolines) in biological and biomedical application contexts. Adv Drug Deliv Rev. 2007;59:1504–20.

    CAS  PubMed  Article  Google Scholar 

  15. Schlaad H, Diehl C, Gress A, Meyer M, Demirel AL, Nur Y, et al. Poly(2-oxazoline)s as smart bioinspired polymers. Macromol Rapid Commun. 2010;31:511–25.

    CAS  PubMed  Article  Google Scholar 

  16. Hoogenboom R, Schlaad H. Bioinspired Poly(2-oxazoline)s. Polymers. 2011;3:467–88.

    CAS  Article  Google Scholar 

  17. Kobayashi S, Uyama H. Polymerization of cyclic imino ethers: from its discovery to the present state of the art. J Polym Sci A Polym Chem. 2001;40:192–209.

    Article  Google Scholar 

  18. Hoogenboom R. Poly(2-oxazoline)s: Alive and kicking. Macromol Chem Phys. 2007;208:18–25.

    CAS  Article  Google Scholar 

  19. Hoogenboom R. Polyethers and polyoxazolines. In: Dubois P, Coulembier O, Raquez JM, editors. Handbook of ring-opening polymerization. Weinheim: Wiley-VCH; 2009.

    Google Scholar 

  20. Taubmann C, Luxenhofer R, Cesana S, Jordan R. First aldehyde-functionalized poly(2-oxazoline)s for chemoselective ligation. Macromol Biosci. 2005;5:603–12.

    CAS  PubMed  Article  Google Scholar 

  21. Kowalczuk A, Kronek J, Bosowska K, Trzebicka B, Dworak A. Star poly(2-ethyl-2-oxazoline)s—synthesis and thermosensitivity. Polym Int. 2011;60:1001–9.

    CAS  Article  Google Scholar 

  22. Jin R-H. Water soluble star block poly(oxazoline) with porphyrin label: a unique emulsion and its shape direction. J Mater Chem. 2004;14(3):320–7.

    CAS  Article  Google Scholar 

  23. Christova D, Velichkova R, Goethals E, du Prez FE. Amphiphilic segmented polymer networks based on poly(2-alkyl-2-oxazoline) and poly(methyl methacrylate). Polymers. 2002;43:4585–90.

    CAS  Article  Google Scholar 

  24. Luxenhofer R, Schulz A, Roques C, Li S, Bronich TK, Batrakova EV, et al. Doubly amphiphilic poly(2-oxazoline)s as high-capacity delivery systems for hydrophobic drugs. Biomaterials. 2010;31:4972–9.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  25. Han Y, He Z, Schulz A, Bronich TK, Jordan R, Luxenhofer R, et al. Synergistic combinations of multiple chemotherapeutic agents in high capacity poly(2-oxazoline) micelles. Mol Pharm. 2012;9(8):2302–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Guillerm B, Darcos V, Lapinte V, Monge S, Coudane J, Robin J-J. Synthesis and evaluation of triazole-linked poly(ε-caprolactone)-graft-poly(2-methyl-2-oxazoline) copolymers as potential drug carriers. Chem Commun. 2012;48:2879–81.

    CAS  Article  Google Scholar 

  27. El-Hag Ali A, AlArifi AS. Swelling and drug release profile of poly(2-ethyl-2-oxazoline)-based hydrogels prepared by gamma radiation-induced copolymerization. J Appl Polym Sci. 2011;120(5):3071–7.

    CAS  Article  Google Scholar 

  28. Kostova B, Ivanova-Mileva K, Rachev D, Christova D. Study of the potential of amphiphilic conetworks based on poly(2-ethyl-2-oxazoline) as new platforms for delivery of drugs with limited solubility. AAPS Pharm Sci Tech. 2013;14(1):352–9.

    CAS  Article  Google Scholar 

  29. Hardman JG, Limbird LE, Gilman AG, editors. The pharmacological basis of therapeutics. 10th ed. New York: Mc Graw-Hill Medical Publishing Division; 2001. p. 1125–9.

    Google Scholar 

  30. Christova D, Velichkova R, Loos W, Goethals E, Prez F. New thermo-responsive polymer materials based on poly(2-ethyl-2-oxazoline) segments. Polymers. 2003;44:2255–61.

    CAS  Article  Google Scholar 

  31. Christova D, Velichkova R, Goethals EJ. Bis-macromonomers of 2-alkyl-2-oxazolines-synthesis and polymerization. Macromol Rapid Commun. 1997;18:1067–73.

    CAS  Article  Google Scholar 

  32. McLean RS, Sauer BB. Tapping mode AFM studies using phase detection for resolution of nanophases in segmented polyurethanes and other block copolymers. Macromolecules. 1997;30:8314–7.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

Financial support by National Science Fund of Bulgaria (Project UNION, Grant # DCVP 02/2/2009) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bistra Kostova or Darinka Christova.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kostova, B., Ivanova, S., Balashev, K. et al. Evaluation of Poly(2-Ethyl-2-Oxazoline) Containing Copolymer Networks of Varied Composition as Sustained Metoprolol Tartrate Delivery Systems. AAPS PharmSciTech 15, 939–946 (2014). https://doi.org/10.1208/s12249-014-0120-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-014-0120-0

KEY WORDS

  • drug delivery
  • metoprolol tartrate
  • polyoxazolines
  • segmented copolymer networks