Advertisement

AAPS PharmSciTech

, Volume 14, Issue 1, pp 456–463 | Cite as

Phase Behaviour and Formation of Fatty Acid Esters Nanoemulsions Containing Piroxicam

  • Nursyamsyila Mat Hadzir
  • Mahiran Basri
  • Mohd Basyaruddin Abdul Rahman
  • Abu Bakar Salleh
  • Raja Noor Zaliha Raja Abdul Rahman
  • Hamidon Basri
Research Article

Abstract

Fatty acid esters are long-chain esters, produced from the reaction of fatty acids and alcohols. They possess potential applications in cosmetic and pharmaceutical formulations due to their excellent wetting behaviour at interfaces and a non-greasy feeling when applied on the skin surfaces. This preliminary work was carried out to construct pseudo-ternary phase diagrams for oleyl laurate, oleyl stearate and oleyl oleate with surfactants and piroxicam. Then, the preparation and optimization study via ‘One-At-A-Time Approach’ were carried out to determine the optimum amount of oil, surfactants and stabilizer using low-energy emulsification method. The results revealed that multi-phase region dominated the three pseudo-ternary phase diagrams. A composition was chosen from each multi-phase region for preparing the nanoemulsions systems containing piroxicam by incorporating a hydrocolloid stabilizer. The results showed that the optimum amount (w/w) of oil for oleyl laurate nanoemulsions was 30 and 20 g (w/w) for oleyl stearate nanoemulsions and oleyl oleate nanoemulsions. For each nanoemulsions system, the amount of mixed surfactants and stabilizer needed for the emulsification to take place was found to be 10 and 0.5 g (w/w), respectively. The emulsification process via high-energy emulsification method successfully produced nano-sized range particles. The nanoemulsions systems passed the centrifugation test and freeze–thaw cycle with no phase failures, and stable for 3 months at various storage temperatures (3°C, 25°C and 45°C). The results proved that the prepared nanoemulsions system cannot be formed spontaneously, and thus, energy input was required to produce nano-sized range particles.

KEY WORDS

high-energy emulsification method low-energy emulsification method particle size pseudo-ternary phase diagram stabilizer 

Notes

ACKNOWLEDGEMENTS

This project is funded by National Biotechnology Directorate (project number 5487707), Ministry of Science, Technology and Innovation (MOSTI), Malaysia, UPM, UiTM and Ministry of Higher Learning (MOHE) grant for the scholar, Nursyamsyila Mat Hadzir.

REFERENCES

  1. 1.
    Syamsul KMW, Salina MR, Siti SO, Hanina MN, Basyaruddin MAR, Kamaruzaman J. Green synthesis of lauryl palmitate via lipase-catalyzed reaction. WASJ. 2010;11(4):401–7.Google Scholar
  2. 2.
    Trani M, Ergan F, Andre G. Lipase-catalyzed production of wax esters. JAOCS. 1991;68(1):20–3.CrossRefGoogle Scholar
  3. 3.
    Chen JP, Wang JB. Wax esters synthesis by lipase-catalyzed esterification with fungal cells immobilized on cellulose biomass support particles. Enzyme Microb Technol. 1997;18:615–22.CrossRefGoogle Scholar
  4. 4.
    Gunawan ER, Basri M, Rahman MBA, Salleh AB, Rahman RNZA. Lipase-catalyzed synthesis of palm-based wax esters. J Oleo Sci. 2004;53:471–7.CrossRefGoogle Scholar
  5. 5.
    Mat Radzi S, Basri M, Salleh AB, Arbakariya A, Rosfarizan M, Abdul Rahman MB, Abdul Rahman RNZ. High performance enzymatic synthesis of oleyl oleate using immobilised lipase from Candida antartica. Electron J Biotechnol. 2005;8:292–8.CrossRefGoogle Scholar
  6. 6.
    El-Aasser MS, Lack CD, Vanderhoff JW, Fowkes FM. The mini-emulsification process-different form of spontaneous emulsification. Colloids Surf. 1988;29(1):103–18.CrossRefGoogle Scholar
  7. 7.
    Benita S, Levy MY. Submicron emulsions as colloidal drug carriers for intravenous administration: comprehensive physicochemical characterization. J Pharm Sci. 1993;82:1069–79.PubMedCrossRefGoogle Scholar
  8. 8.
    Sing AJF, Gracia A, Lachaise J, Brochette P, Salager JL. Interactions and coalescence of nanodroplets in translucent O/W emulsions. Colloids Surf A. 1999;152(1–2):31–9.CrossRefGoogle Scholar
  9. 9.
    Nakajima H. Microemulsions in cosmetics. In: Solans C, Kunieda H, editors. Industrial applications of microemulsions. New York: Marcel Dekker; 1997. p. 175–97.Google Scholar
  10. 10.
    Solans C, Esquena J, Forgiarini AM, Usón N, Morales D, Izquierdo P, Azemar N, Garcia-Celma MJ. Nano-emulsions: formation, properties and applications. Surfactant Sci Ser. 2003;109:525–54.Google Scholar
  11. 11.
    Morales D, Gutierrez JM, Garcia-Celma MJ, Solans C. A study of the relation between bicontinuous microemulsions and oil/water nano-emulsion formation. Langmuir. 2003;19(18):7196–200.CrossRefGoogle Scholar
  12. 12.
    Aubrun OS, Simonnet JT, Alloret FL. Nanoemulsion: a new vehicle for skincare products. Adv Colloid Interface Sci. 2004;108–109:145–9.CrossRefGoogle Scholar
  13. 13.
    Sole I, Maestro A, Pey CM, González C, Solans C, Gutiérrez JM. Nano-emulsions preparation by low energy methods in an ionic surfactant system. Colloids Surf A. 2006;288:138–43.CrossRefGoogle Scholar
  14. 14.
    Solans C, Izquierdo P, Nolla J, Azemar N, Garcia-Celma MJ. Nano-emulsions. Curr Opin Colloid Interface Sci. 2005;10:102–10.CrossRefGoogle Scholar
  15. 15.
    Tadros T, Izquierdo P, Esquena J, Solans C. Formation and stability of nano-emulsions. Adv Colloid Interface Sci. 2004;108/109:303–18.CrossRefGoogle Scholar
  16. 16.
    Chiappetta DA, Sosnik A. Poly(ethylene oxide)-poly(propylene oxide) block copolymer micelles as drug delivery agents: Improved hydrosolubility, stability and bioavailability of drugs. Eur J Pharm Biopharm. 2007;66:303–17.PubMedCrossRefGoogle Scholar
  17. 17.
    Abdulkarim MF, Abdullah GZ, Sakeena MHF, Chitneni M, Yam MF, Mahdi ES, Salman IM, Ameer OZ, Munavvar AS, Basri M, Noor AM. Study of pseudoternary phase diagram behaviour and the effect of several Tweens and Spans on palm oil esters characteristics. Int J Drug Deliv. 2011;3:95–100.CrossRefGoogle Scholar
  18. 18.
    Tadros T. Polymeric surfactants in disperse systems. Adv Colloid Interface Sci. 2009;147–148:281–99.PubMedCrossRefGoogle Scholar
  19. 19.
    Tadros T. Applied surfactants: principal and applications. Weinheim: Wiley; 2005.CrossRefGoogle Scholar
  20. 20.
    Shakeel F, Ramadan W. Transdermal delivery of anticancer drug caffeine from water-in-oil nanoemulsions. Colloids Surf B. 2010;75:356–62.CrossRefGoogle Scholar
  21. 21.
    Peltonen L, Hirvonen J, Yliruusi J. The behavior of sorbitan surfactants at the water–oil interface: straight-chained hydrocarbons from pentane to dodecane as an oil phase. J Colloid Interface Sci. 2001;240:272–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Grinberg VY, Tolstoguzov VB. Thermodynamic incompatibility of proteins and polysaccharides in solutions. Food Hydrocoll. 1997;11(2):145–58.CrossRefGoogle Scholar
  23. 23.
    Salim N, Basri M, Rahman MBA, Abdullah DK, Basri H, Salleh AB. Phase behaviour, formation and characterization of palm-based esters nanoemulsion formulation containing ibuprofen. J Nanomedic Nanotechnol. 2011;2(4):1–5.CrossRefGoogle Scholar
  24. 24.
    Ng SH, Basri M, Rahman MBA, Rahman RNZA, Salleh AB, Ismail Z. Phase behavior and formulation of palm oil esters o/w nanoemulsions stabilized by hydrocolloid gums for cosmeceuticals application. J Dispers Sci Technol. 2011;32:1428–33.CrossRefGoogle Scholar
  25. 25.
    Vilasau J, Solans C, Gomez MJ, Dabrio J, Mujika-Garai R, Esquena J. Stability of oil-in-water paraffin emulsions prepared in a mixed ionic/non-ionic surfactant system. Colloids Surf A. 2011;389:222–9.CrossRefGoogle Scholar
  26. 26.
    Capek I. Degradation of kinetically-stable o/w emulsions. Adv Colloid Interface Sci. 2004;107:125–55.PubMedCrossRefGoogle Scholar
  27. 27.
    Katzbauer B. Properties and applications of xanthan gum. Polym Degrad Stab. 1998;59(1–3):81–4.CrossRefGoogle Scholar
  28. 28.
    Mou D, Chen H, Du D, Mao C, Wan J, Xu H, Yang X. Hydrogel-thickened nanoemulsion system for topical delivery of lipophilic drugs. Int J Pharm. 2008;353:270–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Sadtler VM, Imbert P, Dellacherie E. Ostwald ripening of oil-in-water emulsions stabilized by phenoxy-substituted dextrans. J Colloid Interface Sci. 2002;254:355–61.PubMedCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2013

Authors and Affiliations

  • Nursyamsyila Mat Hadzir
    • 1
    • 5
  • Mahiran Basri
    • 1
  • Mohd Basyaruddin Abdul Rahman
    • 1
  • Abu Bakar Salleh
    • 2
  • Raja Noor Zaliha Raja Abdul Rahman
    • 3
  • Hamidon Basri
    • 4
  1. 1.Department of Chemistry, Faculty of ScienceUniversiti Putra MalaysiaSerdangMalaysia
  2. 2.Department of Biochemistry, Faculty of Biotechnology and Biomolecular SciencesUniversiti Putra MalaysiaSerdangMalaysia
  3. 3.Department of Microbiology, Faculty of Biotechnology and Biomolecular SciencesUniversiti Putra MalaysiaSerdangMalaysia
  4. 4.Department of Medicine, Faculty of Medicine and Health SciencesUniversiti Putra MalaysiaSerdangMalaysia
  5. 5.Department of Chemistry, Faculty of Applied SciencesUniversiti Teknologi MARAArauMalaysia

Personalised recommendations