AAPS PharmSciTech

, Volume 14, Issue 1, pp 189–199 | Cite as

Nanosuspension Based In Situ Gelling Nasal Spray of Carvedilol: Development, In Vitro and In Vivo Characterization

  • Nilesh S. Saindane
  • Kunal P. Pagar
  • Pradeep R. Vavia
Research Article


The objective of the present investigation was to develop in situ gelling nasal spray formulation of carvedilol (CRV) nanosuspension to improve the bioavailability and therapeutic efficiency. Solvent precipitation–ultrasonication method was opted for the preparation of CRV nanosuspension which further incorporated into the in situ gelling polymer phase. Optimized formulation was extensively characterized for various physical parameters like in situ gelation, rheological properties and in vitro drug release. Formation of in situ gel upon contact with nasal fluid was conferred via the use of ion-activated gellan gum as carrier. In vivo studies in rabbits were performed comparing the nasal bioavailability of CRV after oral, nasal, and intravenous administration. Optimized CRV nanosuspension prepared by combination of poloxamer 407 and oleic acid showed good particle size [d (0.9); 0.19 μm], zeta potential (+10.2 mV) and polydispersity (span; 0.63). The formulation containing 0.5% w/v gellan gum demonstrated good gelation ability and desired sustained drug release over period of 12 h. In vivo pharmacokinetic study revealed that the absolute bioavailability of in situ nasal spray formulation (69.38%) was significantly increased as compared to orally administered CRV (25.96%) with mean residence time 8.65 h. Hence, such in situ gel system containing drug nanosuspension is a promising approach for the intranasal delivery in order to increase nasal mucosal permeability and in vivo residence time which altogether improves drug bioavailability.


bioavailability Carvedilol in situ gel intranasal nanosuspension 



The authors are thankful to University Grant Commission (UGC), Government of India, for the research fellowship awarded and All India Council for Technical Education (AICTE-NAFETIC) for research facilities provided.


  1. 1.
    Noriko N, Kimihiro N, Etsuo N. Antioxidant action of the antihypertensive drug carvedilol against lipid peroxidation. Biochem Pharmacol. 2000;59(9):1069–76. doi: 10.1016/S0006-2952(99)00417-7.CrossRefGoogle Scholar
  2. 2.
    Mollendorff EV, Reiff K, Neugebauer G. Pharmacokinetics and bioavailability of carvedilol, a vasodilating beta-blocker. Eur J Clin Pharmacol. 1987;33(5):511–3. doi: 10.1007/BF00544245.CrossRefGoogle Scholar
  3. 3.
    Hussain AA. Intranasal drug delivery. Adv Drug Deliv Rev. 1998;29(1–2):39–49. doi: 10.1016/S0169-409X(97)00060-4.PubMedCrossRefGoogle Scholar
  4. 4.
    Turker S, Onur E, Ozer Y. Nasal route and drug delivery systems. Pharm World Sci. 2004;26(3):137–42. doi: 10.1023/B:PHAR.0000026823.82950.ff.PubMedCrossRefGoogle Scholar
  5. 5.
    Suman JD. Nasal drug delivery. Expert Opin Biol Ther. 2003;3(3):519–23. doi: 10.1517/14712598.3.3.519.PubMedCrossRefGoogle Scholar
  6. 6.
    Illum L. Nasal drug delivery-possibilities, problems and solutions. J Control Release. 2003;87(1–3):187–98. doi: 10.1016/S0168-3659(02)00363-2.PubMedCrossRefGoogle Scholar
  7. 7.
    Ugwoke MI, Verbeke N, Kinget R. The biopharmaceutical aspects of nasal mucoadhesive drug delivery. J Pharm Pharmacol. 2001;53(1):3–22. doi: 10.1211/0022357011775145.PubMedCrossRefGoogle Scholar
  8. 8.
    Michael IU, Remigius UA, Norbert V, Renaat K. Nasal mucoadhesive drug delivery: background, applications, trends and future perspectives. Adv Drug Deliv Rev. 2005;57(11):1640–65. doi: 10.1016/j.addr.2005.07.009.CrossRefGoogle Scholar
  9. 9.
    Michael IU, Sam E, Guy VDM, Norbert V, Renaat K. Bioavailability of apomorphine following intranasal administration of mucoadhesive drug delivery systems in rabbits. Eur J Pharm Sci. 1999;9(2):213–9. doi: 10.1016/S0928-0987(99)00061-5.CrossRefGoogle Scholar
  10. 10.
    Zaki NM, Awad GA, Mortada ND, Abd. Elhady SA. Enhanced bioavailability of metoclopramide HCl by intranasal administration of a mucoadhesive in situ gel with modulated rheological and mucociliary transport properties. Eur J Pharm Sci. 2007;32(4–5):296–307. doi: 10.1016/j.ejps.2007.08.006.PubMedCrossRefGoogle Scholar
  11. 11.
    Merkus FWHM, Schipper NGM, Hermens WAJJ, Romeijn SG, Verhoef JC. Absorption enhancers in nasal drug delivery: efficacy and safety. J Control Release. 1993;24(1–3):201–8. doi: 10.1016/0168-3659(93)90179-9.CrossRefGoogle Scholar
  12. 12.
    Vyas TK, Babbar AK, Sharma RK, Singh S, Misra A. Intranasal mucoadhesive microemulsions of clonazepam: preliminary studies on brain targeting. J Pharm Sci. 2006;95(3):570–80. doi: 10.1002/jps.20480.PubMedCrossRefGoogle Scholar
  13. 13.
    Amnon CS, Haim VL, Shafir B. Systemic delivery of insulin via the nasal route using a new microemulsion system: in vitro and in vivo studies. J Control Release. 2010;148(2):168–76. doi: 10.1016/j.jconrel.2010.08.004.CrossRefGoogle Scholar
  14. 14.
    Lianli L, Indranil N, Kwon HM. Development of an ethyl laurate-based microemulsion for rapid-onset intranasal delivery of diazepam. Int J Pharm. 2002;237(1–2):77–85. doi: 10.1016/S0378-5173(02)00029-7.Google Scholar
  15. 15.
    Muller RH, Jacobs C. Buparvaquone mucoadhesive nanosuspension: preparation, optimisation and long-term stability. Int J Pharm. 2002;237(1–2):151–61. doi: 10.1016/S0378-5173(02)00040-6.PubMedCrossRefGoogle Scholar
  16. 16.
    Dengning X, Peng Q, Hongze P, Hongyu P, Shaoping S, Yongmei Y, et al. Preparation of stable nitrendipine nanosuspensions using the precipitation–ultrasonication method for enhancement of dissolution and oral bioavailability. Eur J Pharm Sci. 2010;40(4):325–34. doi: 10.1016/j.ejps.2010.04.006.CrossRefGoogle Scholar
  17. 17.
    Shi-lei C, Xiao-wei R, Qi-zhi Z, En C, Feng X, Jun C, et al. In-situ gel based on gellan gum as new carrier for nasal administration of mometasone furoate. Int J Pharm. 2009;365(1–2):109–15. doi: 10.1016/j.ijpharm.2008.08.042.Google Scholar
  18. 18.
    Ito F, Fujimori H, Makino K. Factors affecting the loading efficiency of water-soluble drugs in PLGA microspheres. Colloids Surf B Biointerfaces. 2007;61(1):25–9. doi: 10.1016/j.colsurfb.2007.06.029.PubMedCrossRefGoogle Scholar
  19. 19.
    Han CK, Bae YH. Inverse thermally-reversible gelation of aqueous N-isopropylacrylamide copolymer solutions. Polymer. 1998;39:2809–14.CrossRefGoogle Scholar
  20. 20.
    Noha MZ, Gehanne AA, Nahed DM, Seham S, Abd E. Enhanced bioavailability of metoclopramide HCl by intranasal administration of a mucoadhesive in-situ gel with modulated rheological and mucociliary transport properties. Eur J Pharm Biopharm. 2007;32(4–5):296–307. doi: 10.1016/j.ejps.2007.08.006.Google Scholar
  21. 21.
    Callens C, Ceulemans J, Ludwig A, Foreman P, Remon JP. Rheological study on mucoadhesivity of some nasal powder formulations. Eur J Pharm Biopharm. 2003;55(3):323–8. doi: 10.1016/S0939-6411(03)00024-9.PubMedCrossRefGoogle Scholar
  22. 22.
    Rowe RC, Sheskey PJ, Owen SC. Handbook of excipients. 2nd edn. UK; 2006. pp. 1120–1302.Google Scholar
  23. 23.
    Rajebahadur M, Zia H, Nues A, Lee C. Mechanistic study of solubility enhancement of nifedipine using vitamin E TPGS or Solutol HS-15. Drug Deliv. 2006;13(3):201–6. doi: 10.1080/10717540500316094.PubMedCrossRefGoogle Scholar
  24. 24.
    Lennart L, Pia S, Urban S, Mikael R, Anna Z, Ulf O. Amorphous drug nanosuspensions. 1. Inhibition of Ostwald ripening. Langmuir. 2006;22(3):906–10. doi: 10.1021/la0523661.CrossRefGoogle Scholar
  25. 25.
    Grau MJ, Kayser O, Muller RH. Nanosuspensions of poorly soluble drugs reproducibility for small scale production. Int J Pharm. 2000;196(2):155–9. doi: 10.1016/S0378-5173(99)00411-1.PubMedCrossRefGoogle Scholar
  26. 26.
    Patravale VB, Date AA, Kulkarni RM. Nanosuspensions: a promising drug delivery strategy. J Pharm Pharmacol. 2004;56:827–40. doi: 10.1211/0022357023691.PubMedCrossRefGoogle Scholar
  27. 27.
    Yuancai D, Wai KN, Shoucang S, Sanggu K, Reginald BHT. Preparation and characterization of spironolactone nanoparticles by antisolvent precipitation. Int J Pharm. 2009;375(1–2):84–8. doi: 10.1016/j.ijpharm.2009.03.013.Google Scholar
  28. 28.
    Bernard VE, Guy VM, Patrick A. Top-down production of drug nanocrystals: nanosuspension stabilization, miniaturization and transformation into solid products. Int J Pharm. 2008;364(1):64–75. doi: 10.1016/j.ijpharm.2008.07.023.CrossRefGoogle Scholar
  29. 29.
    Kabalnov AS, Shchukin ED. Ostwald ripening theory: applications to fluorocarbon emulsion stability. Adv Colloid Interface Sci. 1992;38:69–97. doi: 10.1016/0001-8686(92)80043-W.CrossRefGoogle Scholar
  30. 30.
    Kabalnov AS, Pertzov AV, Shchukin ED. Ostwald ripening in emulsions: I. Direct observations of Ostwald ripening in emulsions. Colloids Surfactant. 1987;118(2):590–7. doi: 10.1016/0021-9797(87)90492-9.CrossRefGoogle Scholar
  31. 31.
    Heba FS. Sustained-release progesterone nanosuspension following intramuscular injection in ovariectomized rats. Int J Nanomedicine. 2010;5:943–54. doi: 10.2147/IJN.S12947.Google Scholar
  32. 32.
    Wei L, Yonggang Y, Yongshou T, Xinlan X, Yang C, Liwei M, et al. Preparation and in vitro/in vivo evaluation of revaprazan hydrochloride nanosuspension. Int J Pharm. 2011;408:157–62. doi: 10.1016/j.ijpharm.2011.01.059.CrossRefGoogle Scholar
  33. 33.
    Noyes A, Whitney W. The rate of solution of solid substances in their own solution. J Am Chem Soc. 1897;19:930–4.CrossRefGoogle Scholar
  34. 34.
    Dhumal RS, Biradar SV, Yamamura, Paradkar AR, York P. Preparation of amorphous cefuroxime axetil nanoparticles by sonoprecipitation for enhancement of bioavailabilty. Eur J Pharm Biopharm. 2008;70(1):109–15. doi: 10.1016/j.ejpb.2008.04.001.PubMedCrossRefGoogle Scholar
  35. 35.
    Buckton G, Beezer AE. The relationship between particle size and solubility. Int J Pharm. 1992;82(3):R7–10. doi: 10.1016/0378-5173(92)90184-4.CrossRefGoogle Scholar
  36. 36.
    Dua R, Zia H, Needham T. The influence of tonicity and viscosity on the intranasal absorption of salmon calcitonin in rabbits. Int J Pharm. 1997;147(2):233–42. doi: 10.1016/S0378-5173(96)04817-X.CrossRefGoogle Scholar
  37. 37.
    Hongyi Q, Wenwen C, Chunyan H, Li L, Chuming C, Wenmil L, et al. Development of a poloxamer analogs/carbopol-based in situ gelling and mucoadhesive ophthalmic delivery system for puerarin. Int J Pharm. 2007;337(1–2):178–87. doi: 10.1016/j.ijpharm.2006.12.038.Google Scholar
  38. 38.
    Grasdalen H, Smidsrod O. Gelation of gellan gum. Carbohydr Polym. 1987;7(5):371–93. doi: 10.1016/0144-8617(87)90004-X.CrossRefGoogle Scholar
  39. 39.
    Hamid AM, Harris MS, Jaweria T. Once-daily tablet formulation and in vitro release evaluation of using hydroxypropyl methylcellulose: a technical note. AAPS PharmSciTech. 2003;7(3):E178–83. doi: 10.1208/pt070378.Google Scholar
  40. 40.
    Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15(1):25–35. doi: 10.1016/0378-5173(83)90064-9.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2012

Authors and Affiliations

  • Nilesh S. Saindane
    • 1
  • Kunal P. Pagar
    • 1
  • Pradeep R. Vavia
    • 1
  1. 1.Center for Novel Drug Delivery Systems, Department of Pharmaceutical Sciences and TechnologyInstitute of Chemical TechnologyMumbaiIndia

Personalised recommendations