AAPS PharmSciTech

, Volume 13, Issue 4, pp 1396–1406 | Cite as

Formation of Itraconazole–Succinic Acid Cocrystals by Gas Antisolvent Cocrystallization

Research Article

Abstract

Cocrystals of itraconazole, an antifungal drug with poor bioavailability, and succinic acid, a water-soluble dicarboxylic acid, were formed by gas antisolvent (GAS) cocrystallization using pressurized CO2 to improve itraconazole dissolution. In this study, itraconazole and succinic acid were simultaneously dissolved in a liquid solvent, tetrahydrofuran, at ambient conditions. The solution was then pressurized with CO2, which decreased the solvating power of tetrahydrofuran and caused crystallization of itraconazole–succinic acid cocrystals. The cocrystals prepared by GAS cocrystallization were compared to those produced using a traditional liquid antisolvent, n-heptane, for crystallinity, chemical structure, thermal behavior, size and surface morphology, potential clinical relevance, and stability. Powder X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry, and scanning electron microscopy analyses showed that itraconazole–succinic acid cocrystals with physical and chemical properties similar to cocrystals produced using a traditional liquid antisolvent technique can be prepared by CO2 antisolvent cocrystallization. The dissolution profile of itraconazole was significantly enhanced through GAS cocrystallization with succinic acid, achieving over 90% dissolution in less than 2 h. The cocrystals appeared stable against thermal stress for up to 4 weeks under accelerated stability conditions, showing only moderate decreases in their degree of crystallinity but no change in their crystalline structure. This study shows the utility of an itraconazole–succinic acid cocrystal for improving itraconazole bioavailability while also demonstrating the potential for CO2 to replace traditional liquid antisolvents in cocrystal preparation, thus making cocrystal production more environmentally benign and scale-up more feasible.

KEY WORDS

cocrystals dissolution rate gas antisolvent itraconazole 

Notes

ACKNOWLEDGMENT

The authors wish to acknowledge financial support from the National Science Foundation through NIRT grant DMI-0506722.

REFERENCES

  1. 1.
    Aakeröy CB, Forbes S, Desper J. Using cocrystals to systematically modulate aqueous solubility and melting behavior of an anticancer drug. J Am Chem Soc. 2009;131(47):17048–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Good DJ, Rodríguez-Hornedo N. Solubility advantage of pharmaceutical cocrystals. Cryst Growth Des. 2009;9(5):2252–64.CrossRefGoogle Scholar
  3. 3.
    Trask AV, Motherwell WD, Jones W. Physical stability enhancement of theophylline via cocrystallization. Int J Pharm. 2006;320(1):114–23.PubMedCrossRefGoogle Scholar
  4. 4.
    Sun CC, Hou H. Improving mechanical properties of caffeine and methyl gallate crystals by cocrystallization. Cryst Growth Des. 2008;8(5):1575–9.CrossRefGoogle Scholar
  5. 5.
    Karki S, Friščić T, Fábián L, Laity PR, Day GM, Jones W. Improving mechanical properties of crystalline solids by cocrystal formation: new compressible forms of paracetamol. Adv Mater. 2009;21(38–39):3905–9.CrossRefGoogle Scholar
  6. 6.
    Morissette SL, Almarsson Ö, Peterson ML, Remenar JF, Read MJ, Lemmo AV, et al. High-throughput crystallization: polymorphs, salts, co-crystals and solvates of pharmaceutical solids. Adv Drug Deliv Rev. 2004;56(3):275–300.PubMedCrossRefGoogle Scholar
  7. 7.
    Trask AV, Jones W. Crystal engineering of organic cocrystals by the solid-state grinding approach. Org Solid State React. 2005;41–70.Google Scholar
  8. 8.
    Horst JH, Cains PW. Co-crystal polymorphs from a solvent-mediated transformation. Cryst Growth Des. 2008;8(7):2537–42.CrossRefGoogle Scholar
  9. 9.
    Qiao N, Li M, Schlindwein W, Malek N, Davies A, Trappitt G. Pharmaceutical cocrystals: an overview. Int J Pharm. 2011;419(1–2):1–11.PubMedCrossRefGoogle Scholar
  10. 10.
    Padrela L, Rodrigues MA, Velaga SP, Matos HA, De Azevedo EG. Formation of indomethacin-saccharin cocrystals using supercritical fluid technology. Eur J Pharm Sci. 2009;38(1):9–17.PubMedCrossRefGoogle Scholar
  11. 11.
    Padrela L, Rodrigues MA, Velaga SP, Fernandes AC, Matos HA, de Azevedo EG. Screening for pharmaceutical cocrystals using the supercritical fluid enhanced atomization process. J Supercrit Fluids. 2010;53(1–3):156–64.CrossRefGoogle Scholar
  12. 12.
    Subramaniam B, Rajewski RA, Snavely K. Pharmaceutical processing with supercritical carbon dioxide. J Pharm Sci. 1997;86(8):885–90.PubMedCrossRefGoogle Scholar
  13. 13.
    Berends EM, Bruinsma OSL, De Graauw J, van Rosmalen GM. Crystallization of phenanthrene from toluene with carbon dioxide by the GAS process. AIChE J. 1996;42(2):431–9.CrossRefGoogle Scholar
  14. 14.
    Kitamura M, Yamamoto M, Yoshinaga Y, Masuoka H. Crystal size control of sulfathiazole using high pressure carbon dioxide. J Cryst Growth. 1997;178(3):378–86.CrossRefGoogle Scholar
  15. 15.
    Corrigan OI, Crean AM. Comparative physicochemical properties of hydrocortisone-PVP composites prepared using supercritical carbon dioxide by the GAS anti-solvent recrystallization process, by coprecipitation and by spray drying. Int J Pharm. 2002;245(1–2):75–82.PubMedCrossRefGoogle Scholar
  16. 16.
    De Gioannis B, Jestin P, Subra P. Morphology and growth control of griseofulvin recrystallized by compressed carbon dioxide as antisolvent. J Cryst Growth. 2004;262(1–4):519–26.CrossRefGoogle Scholar
  17. 17.
    Roy C, Vrel D, Vega-González A, Jestin P, Laugier S, Subra-Paternault P. Effect of CO2-antisolvent techniques on size distribution and crystal lattice of theophylline. J Supercrit Fluids. 2011;57:267–77.CrossRefGoogle Scholar
  18. 18.
    Bertucco A, Lora M, Kikic I. Fractional crystallization by gas antisolvent technique: theory and experiments. AIChE J. 1998;44(10):2149–58.CrossRefGoogle Scholar
  19. 19.
    Elvassore N, Bertucco A, Caliceti P. Production of insulin-loaded poly (ethylene glycol)/poly (l-lactide)(PEG/PLA) nanoparticles by gas antisolvent techniques. J Pharm Sci. 2001;90(10):1628–36.PubMedCrossRefGoogle Scholar
  20. 20.
    Park SJ, Yeo SD. Recrystallization of caffeine using gas antisolvent process. J Supercrit Fluids. 2008;47(1):85–92.CrossRefGoogle Scholar
  21. 21.
    Shikhar A, Bommana MM, Gupta SS, Squillante E. Formulation development of Carbamazepine-Nicotinamide co-crystals complexed with γ-cyclodextrin using supercritical fluid process. J Supercrit Fluids. 2011;55(3):1070–8.CrossRefGoogle Scholar
  22. 22.
    Ober CA, Montgomery SE, Gupta RB. Formation of itraconazole/L-malic acid cocrystals by gas antisolvent cocrystallization. Powder Technol. 2012(In press).Google Scholar
  23. 23.
    Lu E, Rodríguez-Hornedo N, Suryanarayanan R. A rapid thermal method for cocrystal screening. Cryst Eng Comm. 2008;10(6):665–8.Google Scholar
  24. 24.
    Park SJ, Yeo SD. Recrystallization of phenylbutazone using supercritical fluid antisolvent process. Korean J Chem Eng. 2008;25(3):575–80.CrossRefGoogle Scholar
  25. 25.
    Rodrigues MA, Padrela L, Geraldes V, Santos J, Matos HA, Azevedo EG. Theophylline polymorphs by atomization of supercritical antisolvent induced suspensions. J Supercrit Fluids. 2011;58:303–12.CrossRefGoogle Scholar
  26. 26.
    Yeo SD, Kim MS, Lee JC. Recrystallization of sulfathiazole and chlorpropamide using the supercritical fluid antisolvent process. J Supercrit Fluids. 2003;25(2):143–54.CrossRefGoogle Scholar
  27. 27.
    Subra-Paternault P, Roy C, Vrel D, Vega-Gonzalez A, Domingo C. Solvent effect on tolbutamide crystallization induced by compressed CO2 as antisolvent. J Cryst Growth. 2007;309(1):76–85.CrossRefGoogle Scholar
  28. 28.
    Bakhbakhi Y, Charpentier PA, Rohani S. Experimental study of the GAS process for producing microparticles of beclomethasone-17, 21-dipropionate suitable for pulmonary delivery. Int J Pharm. 2006;309(1):71–80.PubMedCrossRefGoogle Scholar
  29. 29.
    Remenar JF, Morissette SL, Peterson ML, Moulton B, MacPhee JM, Guzman HR, et al. Crystal engineering of novel cocrystals of a triazole drug with 1, 4-dicarboxylic acids. J Am Chem Soc. 2003;125(28):8456–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Al-Badr AA, El-Subbagh HI. Itraconazole: comprehensive profile. Profiles Drug Subst Excip Relat Methodol. 2009;34:193–264.PubMedCrossRefGoogle Scholar
  31. 31.
    Krishnan S, Raj CJ, Robert R, Ramanand A, Das SJ. Growth and characterization of succinic acid single crystals. Cryst Res Technol. 2007;42(11):1087–90.CrossRefGoogle Scholar
  32. 32.
    Demiana IN. Formulation and evaluation of itraconazole via liquid crystal for topical delivery system. J Pharm Biomed Anal. 2001;26(3):387–99.CrossRefGoogle Scholar
  33. 33.
    Krishnan S, Raj CJ, Priya SM, Robert R, Dinakaran S, Das SJ. Optical and dielectric studies on succinic acid single crystals. Cryst Res Technol. 2008;43(8):845–50.CrossRefGoogle Scholar
  34. 34.
    Parkin A, Seaton CC, Blagden N, Wilson CC. Designing hydrogen bonds with temperature-dependent proton disorder: the effect of crystal environment. Cryst Growth Des. 2007;7(3):531–4.CrossRefGoogle Scholar
  35. 35.
    Al Marzouqi AH, Shehatta I, Jobe B, Dowaidar A. Phase solubility and inclusion complex of itraconazole with cyclodextrin using supercritical carbon dioxide. J Pharm Sci. 2006;95(2):292–304.CrossRefGoogle Scholar
  36. 36.
    Payne SM, Kerton FM. Solubility of bio-sourced feedstocks in ‘green’ solvents. Green Chem. 2010;12(9):1648–53.CrossRefGoogle Scholar
  37. 37.
    Datta S, Grant DJW. Crystal structures of drugs: advances in determination, prediction and engineering. Nat Rev Drug Discov. 2004;3(1):42–57.PubMedCrossRefGoogle Scholar
  38. 38.
    Schutz S, Wengatz I, Goodrow MH, Gee SJ, Hummel HE, Hammock BD. Development of an enzyme-linked immunosorbent assay for azadirachtins. J Agric Food Chem. 1997;45(6):2363–8.CrossRefGoogle Scholar
  39. 39.
    Remenar J, MacPhee M, Peterson ML, Morissette SL, Almarsson O. CIS-itraconazole crystalline forms and related processes, pharmaceutical compositions and methods. Google Patents. 2006.Google Scholar
  40. 40.
    Almarsson Ã, Hickey MB, Peterson ML, Zaworotko MJ, Moulton B, Rodriguez-Hornedo N. Pharmaceutical co-crystal compositions. Google Patents. 2011.Google Scholar
  41. 41.
    Morissette SL, Ãlmarsson AR, Peterson ML, Remenar JF, Read MJ, Lemmo AV, et al. High-throughput crystallization: polymorphs, salts, co-crystals and solvates of pharmaceutical solids. Adv Drug Deliv Rev. 2004;56(3):275–300.PubMedCrossRefGoogle Scholar
  42. 42.
    Almarsson O, Hickey MB, Peterson ML, Zaworotko MJ, Moulton B, Rodriguez-Hornedo N. Pharmaceutical co-crystal compositions. US Patent 7,927,613; 2011.Google Scholar
  43. 43.
    Padrela L, de Azevedo EG, Velaga SP. Powder X-ray diffraction method for the quantification of cocrystals in the crystallization mixture. Drug Dev Ind Pharm. 2011;00:1–7.Google Scholar
  44. 44.
    Basavoju S, Bostrom D, Velaga SP. Indomethacin-saccharin cocrystal: design, synthesis and preliminary pharmaceutical characterization. Pharm Res. 2008;25(3):530–41.PubMedCrossRefGoogle Scholar
  45. 45.
    Rohrs BR, Amidon GE, Meury RH, Secreast PJ, King HM, Skoug CJ. Particle size limits to meet USP content uniformity criteria for tablets and capsules. J Pharm Sci. 2006;95(5):1049–59.PubMedCrossRefGoogle Scholar
  46. 46.
    Sathigari SK, Ober CA, Sanganwar GP, Gupta RB, Babu RJ. Single step preparation and deagglomeration of itraconazole microflakes by supercritical antisolvent method for dissolution enhancement. J Pharm Sci. 2011;100(7):2952–65.PubMedCrossRefGoogle Scholar
  47. 47.
    Subra P, Laudani CG, Vega-Gonzalez A, Reverchon E. Precipitation and phase behavior of theophylline in solvent-supercritical CO2 mixtures. J Supercrit Fluids. 2005;35(2):95–105.CrossRefGoogle Scholar
  48. 48.
    Booij J, Lefferts AG (inventors). Agglomerates by crystallization. 2005.Google Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2012

Authors and Affiliations

  1. 1.Department of Chemical EngineeringAuburn UniversityAuburnUSA

Personalised recommendations