AAPS PharmSciTech

, Volume 13, Issue 2, pp 732–746 | Cite as

Protein Particulate Detection Issues in Biotherapeutics Development—Current Status

  • Tapan K. Das
Mini-Review Theme: Sterile Products: Advances and Challenges in Formulation, Manufacturing, Devices and Regulatory Aspects


Formation of aggregates and particulates in biopharmaceutical formulation continues to be one of the major quality concerns in biotherapeutics development. The presence of large quantities of aggregates is believed to be one of the causes of unwanted immunogenic responses. Protein particulates can form in a wide range of sizes and shapes. Therefore, a comprehensive characterization of particulates in biologics formulation continues to be challenging. The quantity of small size aggregates (e.g., dimer) in a stable biologics formulation is well controlled using precision analytical techniques (e.g., high-performance liquid chromatography). Particulate in clinical and commercial formulations is monitored using visual inspection and subvisible particulate counting assays. While visual inspection (by human eye or automated systems) is intended to detect particulates (intrinsic and extrinsic) of ~100 μm or larger, the subvisible counting methods cover smaller size ranges down to 10 μm. It is well recognized that research of particulates in the submicron (<1 μm) and low-micron (1–10 μm) ranges may provide important clues to understand the mechanism of particulate formation. The recent years have seen a significant increase in the development of newer technologies for more comprehensive characterization of particulates. This is attributed to increased awareness in this field of research over the past 5 years, stimulated by scholarly articles, commentaries, and robust discussions in various forums. This article provides an overview of emerging detection technologies that provide complementary characterization data encompassing a wider size range of particulates. It also discusses their advantages and limitations in the context of applications in biotherapeutics development.


biotherapeutics formulation development laser diffraction particulate matter protein aggregation 



The author thanks Dr. Kevin King for review of the manuscript.


  1. 1.
    Reichert JM. Antibody-based therapeutics to watch in 2011. MAbs. 2011;3(1):76–99.PubMedCrossRefGoogle Scholar
  2. 2.
    Walsh G. Biopharmaceutical benchmarks 2010. Nat Biotechnol. 2010;28(9):917–24. doi: 10.1038/nbt0910-917.PubMedCrossRefGoogle Scholar
  3. 3.
    Aggarwal S. What's fueling the biotech engine—2010 to 2011. Nat Biotechnol. 2011;29(12):1083–9. doi: 10.1038/nbt.2060.PubMedCrossRefGoogle Scholar
  4. 4.
    Mullard A. 2010 FDA drug approvals. Nat Rev Drug Discov. 2011;10(2):82–5. doi: 10.1038/nrd3370.PubMedCrossRefGoogle Scholar
  5. 5.
    Roberts CJ, Das TK, Sahin E. Predicting solution aggregation rates for therapeutic proteins: approaches and challenges. Int J Pharm. 2011;418(2):318–33. doi: 10.1016/j.ijpharm.2011.03.064.PubMedCrossRefGoogle Scholar
  6. 6.
    Shire SJ. Formulation and manufacturability of biologics. Curr Opin Biotechnol. 2009;20(6):708–14. doi: 10.1016/j.copbio.2009.10.006.PubMedCrossRefGoogle Scholar
  7. 7.
    Das TK, Nema S. Protein particulate issues in biologics development. American Pharmaceutical Review. 2008;(May 2008):52–7.Google Scholar
  8. 8.
    Carpenter JF, Randolph TW, Jiskoot W, Crommelin DJ, Middaugh CR, Winter G, et al. Overlooking subvisible particles in therapeutic protein products: gaps that may compromise product quality. J Pharm Sci. 2009;98(4):1201–5. doi: 10.1002/jps.21530.PubMedCrossRefGoogle Scholar
  9. 9.
    Singh SK, Afonina N, Awwad M, Bechtold-Peters K, Blue JT, Chou D, et al. An industry perspective on the monitoring of subvisible particles as a quality attribute for protein therapeutics. J Pharm Sci. 2010;99(8):3302–21. doi: 10.1002/jps.22097.PubMedCrossRefGoogle Scholar
  10. 10.
    Narhi LO, Jiang Y, Cao S, Benedek K, Shnek D. A critical review of analytical methods for subvisible and visible particles. Curr Pharm Biotechnol. 2009;10(4):373–81.PubMedCrossRefGoogle Scholar
  11. 11.
    Demeule B, Messick S, Shire SJ, Liu J. Characterization of particles in protein solutions: reaching the limits of current technologies. AAPS J. 2010;12(4):708–15. doi: 10.1208/s12248-010-9233-x.PubMedCrossRefGoogle Scholar
  12. 12.
    Narhi LO, Schmit J, Bechtold-Peters K, Sharma D. Classification of protein aggregates. J Pharm Sci. 2011. doi: 10.1002/jps.22790.
  13. 13.
    Sacha GA, Saffell-Clemmer W, Abram K, Akers MJ. Practical fundamentals of glass, rubber, and plastic sterile packaging systems. Pharm Dev Technol. 2010;15(1):6–34. doi: 10.3109/10837450903511178.PubMedCrossRefGoogle Scholar
  14. 14.
    Rousseau F, Schymkowitz JW, Itzhaki LS. The unfolding story of three-dimensional domain swapping. Structure. 2003;11(3):243–51.PubMedCrossRefGoogle Scholar
  15. 15.
    Shenoy SR, Jayaram B. Proteins: sequence to structure and function—current status. Curr Protein Pept Sci. 2010;11(7):498–514.PubMedCrossRefGoogle Scholar
  16. 16.
    Sloan LA, Fillmore MC, Churcher I. Small-molecule modulation of cellular chaperones to treat protein misfolding disorders. Curr Opin Drug Discov Devel. 2009;12(5):666–81.PubMedGoogle Scholar
  17. 17.
    Amijee H, Madine J, Middleton DA, Doig AJ. Inhibitors of protein aggregation and toxicity. Biochem Soc Trans. 2009;37(Pt 4):692–6. doi: 10.1042/BST0370692.PubMedCrossRefGoogle Scholar
  18. 18.
    Dill KA, Ozkan SB, Shell MS, Weikl TR. The protein folding problem. Annu Rev Biophys. 2008;37:289–316. doi: 10.1146/annurev.biophys.37.092707.153558.PubMedCrossRefGoogle Scholar
  19. 19.
    Roberts CJ. Non-native protein aggregation kinetics. Biotechnol Bioeng. 2007;98(5):927–38. doi: 10.1002/bit.21627.PubMedCrossRefGoogle Scholar
  20. 20.
    Das TK, Carroll JR. Biophysical and biochemical characterization of peptide and protein drug product. In: Nema S, Ludwig JD, editors. Formulation and packaging. 3rd ed. New York: Informa Healthcare; 2010. p. 194–221.Google Scholar
  21. 21.
    Manning MC, Chou DK, Murphy BM, Payne RW, Katayama DS. Stability of protein pharmaceuticals: an update. Pharm Res. 2010;27(4):544–75. doi: 10.1007/s11095-009-0045-6.PubMedCrossRefGoogle Scholar
  22. 22.
    Das TK. Online detection methods and emerging techniques for soluble aggregates in protein biotherapeutics. In: Mahler H, Jiskoot W, editors. Analysis of aggregates and particles in protein pharmaceuticals. Hoboken: John Wiley & Sons; 2012. p. 61–84.CrossRefGoogle Scholar
  23. 23.
    Auge KB, Blake-Haskins AW, Devine S, Rizvi S, Li YM, Hesselberg M, et al. Demonstrating the stability of albinterferon alfa-2b in the presence of silicone oil. J Pharm Sci. 2011;100(12):5100–14. doi: 10.1002/jps.22704.PubMedCrossRefGoogle Scholar
  24. 24.
    Badkar A, Wolf A, Bohack L, Kolhe P. Development of biotechnology products in pre-filled syringes: technical considerations and approaches. AAPS PharmSciTech. 2011;12(2):564–72. doi: 10.1208/s12249-011-9617-y.PubMedCrossRefGoogle Scholar
  25. 25.
    Barnard JG, Rhyner MN, Carpenter JF. Critical evaluation and guidance for using the coulter method for counting subvisible particles in protein solutions. J Pharm Sci. 2012;101(1):140–53. doi: 10.1002/jps.22732.PubMedCrossRefGoogle Scholar
  26. 26.
    Barnard JG, Singh S, Randolph TW, Carpenter JF. Subvisible particle counting provides a sensitive method of detecting and quantifying aggregation of monoclonal antibody caused by freeze–thawing: insights into the roles of particles in the protein aggregation pathway. J Pharm Sci. 2011;100(2):492–503. doi: 10.1002/jps.22305.PubMedCrossRefGoogle Scholar
  27. 27.
    Bee JS, Chiu D, Sawicki S, Stevenson JL, Chatterjee K, Freund E, et al. Monoclonal antibody interactions with micro- and nanoparticles: adsorption, aggregation, and accelerated stress studies. J Pharm Sci. 2009;98(9):3218–38. doi: 10.1002/jps.21768.PubMedCrossRefGoogle Scholar
  28. 28.
    Huang CT, Sharma D, Oma P, Krishnamurthy R. Quantitation of protein particles in parenteral solutions using micro-flow imaging. J Pharm Sci. 2009;98(9):3058–71. doi: 10.1002/jps.21575.PubMedCrossRefGoogle Scholar
  29. 29.
    Huang M, Horwitz TS, Zweiben C, Singh SK. Impact of extractables/leachables from filters on stability of protein formulations. J Pharm Sci. 2011;100(11):4617–30. doi: 10.1002/jps.22670.PubMedCrossRefGoogle Scholar
  30. 30.
    Joubert MK, Luo Q, Nashed-Samuel Y, Wypych J, Narhi LO. Classification and characterization of therapeutic antibody aggregates. J Biol Chem. 2011;286(28):25118–33. doi: 10.1074/jbc.M110.160457.PubMedCrossRefGoogle Scholar
  31. 31.
    Liu L, Ammar DA, Ross LA, Mandava N, Kahook MY, Carpenter JF. Silicone oil microdroplets and protein aggregates in repackaged bevacizumab and ranibizumab: effects of long-term storage and product mishandling. Invest Ophthalmol Vis Sci. 2011;52(2):1023–34. doi: 10.1167/iovs.10-6431.PubMedCrossRefGoogle Scholar
  32. 32.
    Lubiniecki A, Volkin DB, Federici M, Bond MD, Nedved ML, Hendricks L, et al. Comparability assessments of process and product changes made during development of two different monoclonal antibodies. Biologicals. 2011;39(1):9–22. doi: 10.1016/j.biologicals.2010.08.004.PubMedCrossRefGoogle Scholar
  33. 33.
    Ludwig DB, Trotter JT, Gabrielson JP, Carpenter JF, Randolph TW. Flow cytometry: a promising technique for the study of silicone oil-induced particulate formation in protein formulations. Anal Biochem. 2011;410(2):191–9. doi: 10.1016/j.ab.2010.12.008.PubMedCrossRefGoogle Scholar
  34. 34.
    Mach H, Bhambhani A, Meyer BK, Burek S, Davis H, Blue JT, et al. The use of flow cytometry for the detection of subvisible particles in therapeutic protein formulations. J Pharm Sci. 2011;100(5):1671–8. doi: 10.1002/jps.22414.PubMedCrossRefGoogle Scholar
  35. 35.
    Majumdar S, Ford BM, Mar KD, Sullivan VJ, Ulrich RG, D'Souza AJ. Evaluation of the effect of syringe surfaces on protein formulations. J Pharm Sci. 2011;100(7):2563–73. doi: 10.1002/jps.22515.PubMedCrossRefGoogle Scholar
  36. 36.
    Nayak A, Colandene J, Bradford V, Perkins M. Characterization of subvisible particle formation during the filling pump operation of a monoclonal antibody solution. J Pharm Sci. 2011. doi: 10.1002/jps.22676.
  37. 37.
    Rhyner MN. The Coulter principle for analysis of subvisible particles in protein formulations. AAPS J. 2011;13(1):54–8. doi: 10.1208/s12248-010-9245-6.PubMedCrossRefGoogle Scholar
  38. 38.
    Sharma DK, Oma P, Pollo MJ, Sukumar M. Quantification and characterization of subvisible proteinaceous particles in opalescent mAb formulations using micro-flow imaging. J Pharm Sci. 2010;99(6):2628–42. doi: 10.1002/jps.22046.PubMedGoogle Scholar
  39. 39.
    Wuchner K, Buchler J, Spycher R, Dalmonte P, Volkin DB. Development of a microflow digital imaging assay to characterize protein particulates during storage of a high concentration IgG1 monoclonal antibody formulation. J Pharm Sci. 2010;99(8):3343–61. doi: 10.1002/jps.22123.PubMedCrossRefGoogle Scholar
  40. 40.
    Knapp JZ. Origin, result and measurement of USP “essentially free” inspection for visible contaminating particles. PDA J Pharm Sci Technol. 2000;54(3):218–32.PubMedGoogle Scholar
  41. 41.
    Borchert SJ, Maxwell RJ, Davison RL, Aldrich DS. Standard particulate sets for visual inspection systems: their preparation, evaluation, and applications. J Parenter Sci Technol. 1986;40(6):265–76.PubMedGoogle Scholar
  42. 42.
    Knapp JZ. Overview of the forthcoming PDA task force report on the inspection for visible particles in parenteral products: practical answers for present problems. PDA J Pharm Sci Technol. 2003;57(2):131–9.PubMedGoogle Scholar
  43. 43.
    Borchert SJ, Abe A, Aldrich DS, Fox LE, Freeman JE, White RD. Particulate matter in parenteral products: a review. J Parenter Sci Technol. 1986;40(5):212–41.PubMedGoogle Scholar
  44. 44.
    Shabushnig JG, Melchore JA, Geiger M, Chrai S, Gerger ME. A proposed working standard for validation of particulate inspection in sterile solutions. PDA Annual Meeting. Philadelphia, PA1994.Google Scholar
  45. 45.
    USP <1> INJECTIONS, USP 35–NF 30 (USP 35-NF 30 is official from May 2012). It should be noted that the Pharmacopeial definitions for sterile preparations for parenteral use generally do not apply for some types of biological products because of their special nature and licensing requirements (see USP<1041> Biologics). Examples of such products include Products such as antitoxins, antivenins, blood, blood derivatives, immune serums, immunologic diagnostic aids, toxoids, vaccines, and related articles. MD, USA: The United States Pharmacopeial Convention; 2012Google Scholar
  46. 46.
    European Pharmacopoeia 7.5, 7th edition 2012. Parenteral preparations. Strasbourg, France: The European Directorate for the Quality of Medicines & Health Care; 2008Google Scholar
  47. 47.
    European Pharmacopoeia 7.0, 2.9.20. Particulate contamination: visible particles. Strasbourg, France: The European Directorate for the Quality of Medicines & Health Care; 2008Google Scholar
  48. 48.
    USP <1788>. Methods for the determination of particulate matter in injections and ophthalmic solutions, USP 35–NF 30. MD, USA: The United States Pharmacopeial Convention; 2012Google Scholar
  49. 49.
    Arvinte T. Analytical methods for protein formulations. In: Jiskoot W, Crommelin DJ, editors. Methods for structural analysis of protein pharmaceuticals. Arlington, VA: AAPS Press; 2005. p. 661–6.Google Scholar
  50. 50.
    Dixit N, Maloney KM, Kalonia DS. Application of quartz crystal microbalance to study the impact of pH and ionic strength on protein-silicone oil interactions. Int J Pharm. 2011;412(1–2):20–7. doi: 10.1016/j.ijpharm.2011.03.062.PubMedCrossRefGoogle Scholar
  51. 51.
    Jones LS, Kaufmann A, Middaugh CR. Silicone oil induced aggregation of proteins. J Pharm Sci. 2005;94(4):918–27. doi: 10.1002/jps.20321.PubMedCrossRefGoogle Scholar
  52. 52.
    Ludwig DB, Carpenter JF, Hamel JB, Randolph TW. Protein adsorption and excipient effects on kinetic stability of silicone oil emulsions. J Pharm Sci. 2010;99(4):1721–33. doi: 10.1002/jps.21982.PubMedGoogle Scholar
  53. 53.
    Strehl R, Rombach-Riegraf V, Diez M, Egodage K, Bluemel M, Jeschke M, et al. Discrimination between silicone oil droplets and protein aggregates in biopharmaceuticals: a novel multiparametric image filter for sub-visible particles in microflow imaging analysis. Pharm Res. 2011. doi: 10.1007/s11095-011-0590-7.
  54. 54.
    Thirumangalathu R, Krishnan S, Ricci MS, Brems DN, Randolph TW, Carpenter JF. Silicone oil- and agitation-induced aggregation of a monoclonal antibody in aqueous solution. J Pharm Sci. 2009;98(9):3167–81. doi: 10.1002/jps.21719.PubMedCrossRefGoogle Scholar
  55. 55.
    de Jongh HH, Wierenga PA. Assessing the extent of protein intermolecular interactions at air–water interfaces using spectroscopic techniques. Biopolymers. 2006;82(4):384–9. doi: 10.1002/bip.20519.PubMedCrossRefGoogle Scholar
  56. 56.
    Joshi O, Chu L, McGuire J, Wang DQ. Adsorption and function of recombinant factor VIII at the air–water interface in the presence of Tween 80. J Pharm Sci. 2009;98(9):3099–107. doi: 10.1002/jps.21569.PubMedCrossRefGoogle Scholar
  57. 57.
    Kudryashova EV, Visser AJ, De Jongh HH. Reversible self-association of ovalbumin at air–water interfaces and the consequences for the exerted surface pressure. Protein Sci. 2005;14(2):483–93. doi: 10.1110/ps.04771605.PubMedCrossRefGoogle Scholar
  58. 58.
    Serno T, Carpenter JF, Randolph TW, Winter G. Inhibition of agitation-induced aggregation of an IgG-antibody by hydroxypropyl-beta-cyclodextrin. J Pharm Sci. 2010;99(3):1193–206. doi: 10.1002/jps.21931.PubMedCrossRefGoogle Scholar
  59. 59.
    Wang C, Shah N, Thakur G, Zhou F, Leblanc RM. Alpha-synuclein in alpha-helical conformation at air–water interface: implication of conformation and orientation changes during its accumulation/aggregation. Chem Commun (Camb). 2010;46(36):6702–4. doi: 10.1039/c0cc02098b.CrossRefGoogle Scholar
  60. 60.
    Yu Z, Johnston KP, Williams 3rd RO. Spray freezing into liquid versus spray-freeze drying: influence of atomization on protein aggregation and biological activity. Eur J Pharm Sci. 2006;27(1):9–18. doi: 10.1016/j.ejps.2005.08.010.PubMedCrossRefGoogle Scholar
  61. 61.
    Kolhe P, Amend E, Singh SK. Impact of freezing on pH of buffered solutions and consequences for monoclonal antibody aggregation. Biotechnol Prog. 2010;26(3):727–33. doi: 10.1002/btpr.377.PubMedCrossRefGoogle Scholar
  62. 62.
    Nema S, Washkuhn RJ, Brendel RJ. Excipients and their use in injectable products. PDA J Pharm Sci Technol. 1997;51(4):166–71.PubMedGoogle Scholar
  63. 63.
    Chi EY, Krishnan S, Randolph TW, Carpenter JF. Physical stability of proteins in aqueous solution: mechanism and driving forces in nonnative protein aggregation. Pharm Res. 2003;20(9):1325–36.PubMedCrossRefGoogle Scholar
  64. 64.
    Garcia M, Monge M, Leon G, Lizano S, Segura E, Solano G, et al. Effect of preservatives on IgG aggregation, complement-activating effect and hypotensive activity of horse polyvalent antivenom used in snakebite envenomation. Biologicals. 2002;30(2):143–51.PubMedCrossRefGoogle Scholar
  65. 65.
    Goyal MK, Roy I, Amin A, Banerjee UC, Bansal AK. Stabilization of lysozyme by benzyl alcohol: surface tension and thermodynamic parameters. J Pharm Sci. 2010;99(10):4149–61. doi: 10.1002/jps.22129.PubMedCrossRefGoogle Scholar
  66. 66.
    Lam XM, Patapoff TW, Nguyen TH. The effect of benzyl alcohol on recombinant human interferon-gamma. Pharm Res. 1997;14(6):725–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Rodriguez-Martinez JA, Rivera-Rivera I, Griebenow K. Prevention of benzyl alcohol-induced aggregation of chymotrypsinogen by PEGylation. J Pharm Pharmacol. 2011;63(6):800–5. doi: 10.1111/j.2042-7158.2011.01288.x.PubMedCrossRefGoogle Scholar
  68. 68.
    Roy S, Jung R, Kerwin BA, Randolph TW, Carpenter JF. Effects of benzyl alcohol on aggregation of recombinant human interleukin-1-receptor antagonist in reconstituted lyophilized formulations. J Pharm Sci. 2005;94(2):382–96. doi: 10.1002/jps.20258.PubMedCrossRefGoogle Scholar
  69. 69.
    Thirumangalathu R, Krishnan S, Brems DN, Randolph TW, Carpenter JF. Effects of pH, temperature, and sucrose on benzyl alcohol-induced aggregation of recombinant human granulocyte colony stimulating factor. J Pharm Sci. 2006;95(7):1480–97. doi: 10.1002/jps.20619.PubMedCrossRefGoogle Scholar
  70. 70.
    USP <788>. Particulate matter in injections. USP 35–NF 30. MD, USA: The United States Pharmacopeial Convention; 2012Google Scholar
  71. 71.
    European Pharmacopeia 7.1, 2.9.19. Particulate contamination: sub-visible particles. Strasbourg, France: The European Directorate for the Quality of Medicines & Health Care; 2011Google Scholar
  72. 72.
    USP <789>. Particulate matter in ophthalmic solutions. USP 35–NF 30. MD, USA: The United States Pharmacopeial Convention; 2012Google Scholar
  73. 73.
    Chi EY, Weickmann J, Carpenter JF, Manning MC, Randolph TW. Heterogeneous nucleation-controlled particulate formation of recombinant human platelet-activating factor acetylhydrolase in pharmaceutical formulation. J Pharm Sci. 2005;94(2):256–74. doi: 10.1002/jps.20237.PubMedCrossRefGoogle Scholar
  74. 74.
    Aldrich DS. Membrane-based counting of the particulate matter load in parenteral products. The Microscope. 1997;45(3):73–83.Google Scholar
  75. 75.
    McCrone WC, Delly JG. Principles and techniques. Ann Arbor, MI: Ann Arbor Science Publishers; 1973.Google Scholar
  76. 76.
    Brown L. Characterizing biologics using dynamic imaging particle analysis. Bioprocess Int. 2011:s2–s7.Google Scholar
  77. 77.
    Burchard W, Schmidt M, Stockmayer WH. Information on polydispersity and branching from combined quasi-elastic and integrated scattering. Macromol. 1980;13:1265–72.CrossRefGoogle Scholar
  78. 78.
    Krishnamurthy R, Sukumar M, Das TK, Lacher NA. Emerging analytical technologies for biotherapeutics development. Bioprocess Int. 2008;6(5):32–42.Google Scholar
  79. 79.
    Philo JS. Is any measurement method optimal for all aggregate sizes and types? AAPS J. 2006;8(3):E564–71. doi: 10.1208/aapsj080365.PubMedCrossRefGoogle Scholar
  80. 80.
    Cao X, Wen ZQ, Vance A, Torraca G. Raman microscopic applications in the biopharmaceutical industry: in situ identification of foreign particulates inside glass containers with aqueous formulated solutions. Appl Spectrosc. 2009;63(7):830–4. doi: 10.1366/000370209788701026.PubMedCrossRefGoogle Scholar
  81. 81.
    Demeule B, Palais C, Machaidze G, Gurny R, Arvinte T. New methods allowing the detection of protein aggregates: a case study on trastuzumab. MAbs. 2009;1(2):142–50.PubMedCrossRefGoogle Scholar
  82. 82.
    Filipe V, Poole R, Kutscher M, Forier K, Braeckmans K, Jiskoot W. Fluorescence single particle tracking for the characterization of submicron protein aggregates in biological fluids and complex formulations. Pharm Res. 2011;28(5):1112–20. doi: 10.1007/s11095-011-0374-0.PubMedCrossRefGoogle Scholar
  83. 83.
    Amos WB, White JG. How the confocal laser scanning microscope entered biological research. Biol Cell. 2003;95(6):335–42.PubMedCrossRefGoogle Scholar
  84. 84.
    Kolewe ME, Henson MA, Roberts SC. Characterization of aggregate size in Taxus suspension cell culture. Plant Cell Rep. 2010;29(5):485–94. doi: 10.1007/s00299-010-0837-5.PubMedCrossRefGoogle Scholar
  85. 85.
    Montanari L, Pavanetto F, Conti B, Ponci R, Grassi M. Evaluation of official instrumental methods for the determination of particulate matter contamination in large volume parenteral solutions. J Pharm Pharmacol. 1986;38(11):785–90.PubMedCrossRefGoogle Scholar
  86. 86.
    Jorio H, Tran R, Meghrous J, Bourget L, Kamen A. Analysis of baculovirus aggregates using flow cytometry. J Virol Methods. 2006;134(1–2):8–14. doi: 10.1016/j.jviromet.2005.11.009.PubMedCrossRefGoogle Scholar
  87. 87.
    Tung JW, Heydari K, Tirouvanziam R, Sahaf B, Parks DR, Herzenberg LA. Modern flow cytometry: a practical approach. Clin Lab Med. 2007;27(3):453–68. doi: 10.1016/j.cll.2007.05.001. v.PubMedCrossRefGoogle Scholar
  88. 88.
    Burg TP, Godin M, Knudsen SM, Shen W, Carlson G, Foster JS, et al. Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature. 2007;446(7139):1066–9. doi: 10.1038/nature05741.PubMedCrossRefGoogle Scholar
  89. 89.
    Bryan AK, Goranov A, Amon A, Manalis SR. Measurement of mass, density, and volume during the cell cycle of yeast. Proc Natl Acad Sci USA. 2010;107(3):999–1004. doi: 10.1073/pnas.0901851107.PubMedCrossRefGoogle Scholar
  90. 90.
    Dextras P, Burg TP, Manalis SR. Integrated measurement of the mass and surface charge of discrete microparticles using a suspended microchannel resonator. Anal Chem. 2009;81(11):4517–23. doi: 10.1021/ac9005149.PubMedCrossRefGoogle Scholar
  91. 91.
    Son S, Grover WH, Burg TP, Manalis SR. Suspended microchannel resonators for ultralow volume universal detection. Anal Chem. 2008;80(12):4757–60. doi: 10.1021/ac800307a.PubMedCrossRefGoogle Scholar
  92. 92.
    Filipe V, Hawe A, Jiskoot W. Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm Res. 2010;27(5):796–810. doi: 10.1007/s11095-010-0073-2.PubMedCrossRefGoogle Scholar
  93. 93.
    Lochmann A, Nitzsche H, von Einem S, Schwarz E, Mader K. The influence of covalently linked and free polyethylene glycol on the structural and release properties of rhBMP-2 loaded microspheres. J Control Release. 2010;147(1):92–100. doi: 10.1016/j.jconrel.2010.06.021.PubMedCrossRefGoogle Scholar
  94. 94.
    Hansma HG, Pietrasanta L. Atomic force microscopy and other scanning probe microscopies. Curr Opin Chem Biol. 1998;2(5):579–84.PubMedCrossRefGoogle Scholar
  95. 95.
    Lee H, Kirchmeier M, Mach H. Monoclonal antibody aggregation intermediates visualized by atomic force microscopy. J Pharm Sci. 2011;100(2):416–23. doi: 10.1002/jps.22279.PubMedCrossRefGoogle Scholar
  96. 96.
    Maas C, Hermeling S, Bouma B, Jiskoot W, Gebbink MF. A role for protein misfolding in immunogenicity of biopharmaceuticals. J Biol Chem. 2007;282(4):2229–36. doi: 10.1074/jbc.M605984200.PubMedCrossRefGoogle Scholar
  97. 97.
    Shire SJ, Shahrokh Z, Liu J. Challenges in the development of high protein concentration formulations. J Pharm Sci. 2004;93(6):1390–402. doi: 10.1002/jps.20079.PubMedCrossRefGoogle Scholar
  98. 98.
    Cromwell ME, Hilario E, Jacobson F. Protein aggregation and bioprocessing. AAPS J. 2006;8(3):E572–9. doi: 10.1208/aapsj080366.PubMedCrossRefGoogle Scholar
  99. 99.
    Mahler HC, Friess W, Grauschopf U, Kiese S. Protein aggregation: pathways, induction factors and analysis. J Pharm Sci. 2009;98(9):2909–34. doi: 10.1002/jps.21566.PubMedCrossRefGoogle Scholar
  100. 100.
    Calamai M, Canale C, Relini A, Stefani M, Chiti F, Dobson CM. Reversal of protein aggregation provides evidence for multiple aggregated states. J Mol Biol. 2005;346(2):603–16. doi: 10.1016/j.jmb.2004.11.067.PubMedCrossRefGoogle Scholar
  101. 101.
    Li Y, Ogunnaike BA, Roberts CJ. Multi-variate approach to global protein aggregation behavior and kinetics: effects of pH, NaCl, and temperature for alpha-chymotrypsinogen A. J Pharm Sci. 2010;99(2):645–62. doi: 10.1002/jps.21869.PubMedGoogle Scholar
  102. 102.
    Morris AM, Watzky MA, Agar JN, Finke RG. Fitting neurological protein aggregation kinetic data via a 2-step, minimal/“Ockham's razor” model: the Finke-Watzky mechanism of nucleation followed by autocatalytic surface growth. Biochemistry. 2008;47(8):2413–27. doi: 10.1021/bi701899y.PubMedCrossRefGoogle Scholar
  103. 103.
    Lee CC, Walters RH, Murphy RM. Reconsidering the mechanism of polyglutamine peptide aggregation. Biochemistry. 2007;46(44):12810–20. doi: 10.1021/bi700806c.PubMedCrossRefGoogle Scholar
  104. 104.
    Gabrielson JP, Randolph TW, Kendrick BS, Stoner MR. Sedimentation velocity analytical ultracentrifugation and SEDFIT/c(s): limits of quantitation for a monoclonal antibody system. Anal Biochem. 2007;361(1):24–30. doi: 10.1016/j.ab.2006.11.012.PubMedCrossRefGoogle Scholar
  105. 105.
    Goetz H, Kuschel M, Wulff T, Sauber C, Miller C, Fisher S, et al. Comparison of selected analytical techniques for protein sizing, quantitation and molecular weight determination. J Biochem Biophys Methods. 2004;60(3):281–93. doi: 10.1016/j.jbbm.2004.01.007.PubMedCrossRefGoogle Scholar
  106. 106.
    He F, Phan DH, Hogan S, Bailey R, Becker GW, Narhi LO, et al. Detection of IgG aggregation by a high throughput method based on extrinsic fluorescence. J Pharm Sci. 2010;99(6):2598–608. doi: 10.1002/jps.22036.PubMedGoogle Scholar
  107. 107.
    Liu J, Andya JD, Shire SJ. A critical review of analytical ultracentrifugation and field flow fractionation methods for measuring protein aggregation. AAPS J. 2006;8(3):E580–9. doi: 10.1208/aapsj080367.PubMedCrossRefGoogle Scholar
  108. 108.
    Hovgaard MB, Dong M, Otzen DE, Besenbacher F. Quartz crystal microbalance studies of multilayer glucagon fibrillation at the solid–liquid interface. Biophys J. 2007;93(6):2162–9. doi: 10.1529/biophysj.107.109686.PubMedCrossRefGoogle Scholar
  109. 109.
    Lubarsky GV, Davidson MR, Bradley RH. Hydration–dehydration of adsorbed protein films studied by AFM and QCM-D. Biosens Bioelectron. 2007;22(7):1275–81. doi: 10.1016/j.bios.2006.05.024.PubMedCrossRefGoogle Scholar
  110. 110.
    Patel AR, Kerwin BA, Kanapuram SR. Viscoelastic characterization of high concentration antibody formulations using quartz crystal microbalance with dissipation monitoring. J Pharm Sci. 2009;98(9):3108–16. doi: 10.1002/jps.21610.PubMedCrossRefGoogle Scholar
  111. 111.
    Jordan JL, Fernandez EJ. QCM-D sensitivity to protein adsorption reversibility. Biotechnol Bioeng. 2008;101(4):837–42. doi: 10.1002/bit.21977.PubMedCrossRefGoogle Scholar
  112. 112.
    Liu W, Swift R, Torraca G, Nashed-Samuel Y, Wen ZQ, Jiang Y, et al. Root cause analysis of tungsten-induced protein aggregation in pre-filled syringes. PDA J Pharm Sci Technol. 2010;64(1):11–9.PubMedGoogle Scholar
  113. 113.
    Rosenberg AS. Effects of protein aggregates: an immunologic perspective. AAPS J. 2006;8(3):E501–7. doi: 10.1208/aapsj080359.PubMedCrossRefGoogle Scholar
  114. 114.
    Kessler M, Goldsmith D, Schellekens H. Immunogenicity of biopharmaceuticals. Nephrol Dial Transplant. 2006;21 Suppl 5:v9–v12. doi: 10.1093/ndt/gfl476.PubMedCrossRefGoogle Scholar
  115. 115.
    Schellekens H. How to predict and prevent the immunogenicity of therapeutic proteins. Biotechnol Annu Rev. 2008;14:191–202. doi: 10.1016/S1387-2656(08)00007-0.PubMedCrossRefGoogle Scholar
  116. 116.
    Hermeling S, Schellekens H, Maas C, Gebbink MF, Crommelin DJ, Jiskoot W. Antibody response to aggregated human interferon alpha2b in wild-type and transgenic immune tolerant mice depends on type and level of aggregation. J Pharm Sci. 2006;95(5):1084–96. doi: 10.1002/jps.20599.PubMedCrossRefGoogle Scholar
  117. 117.
    Purohit VS, Middaugh CR, Balasubramanian SV. Influence of aggregation on immunogenicity of recombinant human factor VIII in hemophilia A mice. J Pharm Sci. 2006;95(2):358–71. doi: 10.1002/jps.20529.PubMedCrossRefGoogle Scholar
  118. 118.
    Fradkin AH, Carpenter JF, Randolph TW. Immunogenicity of aggregates of recombinant human growth hormone in mouse models. J Pharm Sci. 2009;98(9):3247–64. doi: 10.1002/jps.21834.PubMedCrossRefGoogle Scholar
  119. 119.
    Jahn EM, Schneider CK. How to systematically evaluate immunogenicity of therapeutic proteins—regulatory considerations. N Biotechnol. 2009;25(5):280–6. doi: 10.1016/j.nbt.2009.03.012.PubMedCrossRefGoogle Scholar
  120. 120.
    Bugelski PJ, Treacy G. Predictive power of preclinical studies in animals for the immunogenicity of recombinant therapeutic proteins in humans. Curr Opin Mol Ther. 2004;6(1):10–6.PubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2012

Authors and Affiliations

  1. 1.Pfizer Biotherapeutics Pharmaceutical SciencesChesterfieldUSA

Personalised recommendations