AAPS PharmSciTech

, Volume 13, Issue 2, pp 364–372 | Cite as

Preparation and Characterization of Microcapsules Based on Biodegradable Polymers: Pectin/Casein Complex for Controlled Drug Release Systems

  • Marcela M. Baracat
  • Adriana M. Nakagawa
  • Rúbia Casagrande
  • Sandra R. Georgetti
  • Waldiceu A. VerriJr
  • Osvaldo de Freitas
Research Paper Theme: Advanced Technologies for Oral Controlled Release

Abstract

Controlled release of drugs is an important strategy to diminish the drug dose and adverse side effects. Aqueous mixtures of polysaccharides and proteins are usually unstable above a certain biopolymer concentration and phase separation occurs either because of repulsive (segregative) or attractive (associative) interactions. Herein, pectin/casein microcapsules were prepared by complex coacervation aiming at prolonged drug release. The morphological characteristics, particle size, distribution, and release kinetics of microcapsules were studied using as a model the hydrophilic drug acetaminophen. It was detected that complexation of pectin/casein particles occurs at pH values lower than 6, resulting in the formation of spherical particles after spray drying. Microcapsules had a mean diameter of 3.138 and 4.929 μm without drug, and of 4.680 and 5.182 μm with drug using USP and 8003 pectin, respectively. The in vitro release of acetaminophen from microcapsules was slow and the drug release mechanism was controlled by diffusion following first-order kinetics. There was greater release of acetaminophen in simulated gastric fluid than simulated intestinal fluid conditions. Concluding, the polymeric system present herein seemed to be appropriate for a prolonged release of acetaminophen throughout the gastrointestinal tract. Nevertheless, it is likely that it is a promising pectin/casein complex for lipossoluble drugs, which merits further investigation.

KEY WORDS

casein complex coacervation microcapsules pectin release kinetics 

Notes

ACKNOWLEDGMENTS

The authors thank the financial support of CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), Brazil. WAVJ receives a CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) fellowship, Brazil.

REFERENCES

  1. 1.
    Bruschi ML, Cardoso MLC, Lucchesi MB, Gremião MPD. Gelatin microparticles containing propolis obtained by spray-drying technique: preparation and characterization. Int J Pharm. 2003;264:45–55.PubMedCrossRefGoogle Scholar
  2. 2.
    Stenekes RJH, Franssen O, Van Bommel EMG, Cromelin DJA, Hennink WE. The use of aqueous PEG/Dextran phase separation for the preparation of dextran microspheres. Int J Pharm. 1999;183:29–32.PubMedCrossRefGoogle Scholar
  3. 3.
    Rossler B, Kreuter J, Scherer D. Collagen microparticles:preparation and properties. J Microencapsul. 1995;12:49–57.PubMedCrossRefGoogle Scholar
  4. 4.
    Wu H, Wang S, Fang H, Zan X, Zhang J, Wan Y. Chitosan-polycaprolactone copolymer microspheres for transforming growth factor-β1 delivery. Colloids Surf B: Biointerfaces. 2011;82:602–8.CrossRefGoogle Scholar
  5. 5.
    Liu R, Ma G-H, Wan Y-H, Su Z-G. Influence of process parameters on the size distribution of PLA microcapsules prepared by combining membrane emulsification technique and double emulsion–solvent evaporation method. Colloids Surf B: Biointerfaces. 2005;45:144–53.CrossRefGoogle Scholar
  6. 6.
    Baracat MM, Nakagawa A, Freitas LAP, Freitas O. Microcapsule processing in a spouted bed. Can J Chem Eng. 2004;82:134–41.CrossRefGoogle Scholar
  7. 7.
    Rediguieri CF, Freitas O, Lettinga MP, Tuinier R. Thermodynamic incompatibility and complex formation in pectin/caseinate mixtures. Biomacromolecules. 2007;8:3345–54.PubMedCrossRefGoogle Scholar
  8. 8.
    Saravanan M, Rao KP. Pectin–gelatin and alginate–gelatin complex coacervation for controlled drug delivery: influence of anionic polysaccharides and drugs being encapsulated on physicochemical properties of microcapsules. Carbohydr Polym. 2010;80:808–16.CrossRefGoogle Scholar
  9. 9.
    Heidebach T, Först P, Kulozik U. Influence of casein-based microencapsulation on freeze-drying and storage of probiotic cells. J Food Eng. 2010;98:309–16.CrossRefGoogle Scholar
  10. 10.
    Jones OG, Lesmes U, Dubin P, McClements DJ. Effect of polysaccharide charge on formation and properties of biopolymer nanoparticles created by heat treatment of β-lactoglobulin-pectin complexes. Food Hydrocolloids. 2010;24:374–83.CrossRefGoogle Scholar
  11. 11.
    Tromp RH, de Kruif CG, van Eijk M, Rolin C. On the mechanism of stabilization of acidified milk drinks by pectin. Food Hydrocolloids. 2004;18:565–72.CrossRefGoogle Scholar
  12. 12.
    Antonov YA, Grinberg VY, Tolstouzov VB. Incompatibility of proteins and polysaccharides in aqueous media. Vysokomol Soedin. 1976;18:566–9.Google Scholar
  13. 13.
    Amice-Quemeneur N, Haluk J-P, Hardy J, Kravtchenko TP. Influence of the acidification process on the colloidal stability of acidic milk drinks prepared from reconstituted nonfat dry milk. J Dairy Sci. 1995;78:2683–90.CrossRefGoogle Scholar
  14. 14.
    Maroziene A, de Kruif CG. Interaction of pectin and casein micelles. Food Hydrocolloids. 2000;14:391–4.CrossRefGoogle Scholar
  15. 15.
    Tuinier R, Rolin C, de Kruif CG. Eletroabsorption of pectin in to casein micelles. Biomacromolecules. 2002;3:632–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Matia-Merino L, Lau K, Dickinson E. Effects of low-methoxyl amidated pectin and ionic calcium on rheology and microstructure of acid-induced sodium caseinate gels. Food Hydrocolloids. 2004;18:271–82.CrossRefGoogle Scholar
  17. 17.
    Pereyra R, Schmidt KA, Wicker L. Interaction and stabilization of acidified casein dispersions with low and high methoxyl pectins. J Agric Food Chem. 1997;45:3448–51.CrossRefGoogle Scholar
  18. 18.
    Sopimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release. 2001;70:1–20.CrossRefGoogle Scholar
  19. 19.
    Ortiz SEM, Mauri A, Monterrey-Quintero ES, Trindade MA, Santana AS, Favaro-Trindade CS. Production and properties of casein hydrolysate microencapsulated by spray drying with soybean protein isolate. Food Sci Technol. 2009;42:919–23.Google Scholar
  20. 20.
    Tunçay M, Franssen O, Hennink WE. A novel preparation method for polymeric microparticles without the use of organic solvents. Int J Pharm. 1998;168:1–7.CrossRefGoogle Scholar
  21. 21.
    Makino K, Fujita Y, Takao K-I, Kobayashi S, Ohshima H. Preparation and properties of thermosensitive hydrogel microcapsules. Colloids Surf. 2001;21:259–63.CrossRefGoogle Scholar
  22. 22.
    Xie H-Q, Xiang Q. Surface-graft polymerization of doped polyaniline with hydrophilic monomers. Eur Polym J. 2000;36:509–17.CrossRefGoogle Scholar
  23. 23.
    Lee J-H, Park TG, Choi H-K. Effect of formulation and processing variables on the characteristics of microspheres for water-soluble drugs prepared by W/O/O double emulsion solvent diffusion method. Int J Pharm. 2000;196:75–83.PubMedCrossRefGoogle Scholar
  24. 24.
    Remuñán-Lopez C, Bodmeier R. Effect of formulation and process variables on the formation of chitosan–gelatin coacervates. Int J Pharm. 1996;135:63–72.CrossRefGoogle Scholar
  25. 25.
    Carrasquillo KG, Stanley AM, Aponte-Carro JC, Jésus PD, Constantino HR, Bosques CJ, Griebenow K. Non-aqueous encapsulation of excipient-stabilized spray-freeze dried BSA into poly (lactide-co-glycolide) microspheres results in release of native protein. J Control Release. 2001;76:199–208.PubMedCrossRefGoogle Scholar
  26. 26.
    Rácz I, Drédan J, Antal I, Gondár E. Comparative evaluation of microcapsules prepared by fluidization atomization and melt coating process. Drug Dev Ind Pharm. 1997;23:583–7.CrossRefGoogle Scholar
  27. 27.
    Gouin S. Microencapsulation: industrial appraisal of existing technologies and trends. Trends Food Sci Technol. 2004;15:330–47.CrossRefGoogle Scholar
  28. 28.
    Dong Z-J, Xia S-Q, Hua S, Hayat K, Zhang X-M. Optimization of cross-linking parameters during production of transglutaminase-hardened spherical multinuclear microcapsules by complex coacervation. Colloids Surf B: Biointerfaces. 2008;63:41–7.CrossRefGoogle Scholar
  29. 29.
    Daí C, Wang B, Zhao H, Li B. Factors affecting protein release from microcapsule prepared by liposome in alginate. Colloids Surf B: Biointerfaces. 2005;42:253–8.CrossRefGoogle Scholar
  30. 30.
    Freitas O, Mestriner-Jr W, Conceição EC, Baracat MM, Moreschi PE. Preocesso de preparação de complexos biodegradáveis, complexos biodegradáveis assim obtidos e método para avaliação da eficiência mastigatória; 2007. Brazil Patent, PI 0700557-1.Google Scholar
  31. 31.
    Dash V, Mishra SK, Singh M, Goyal AK, Rath G. Release kinetic studies of aspirin microcapsules from ethyl cellulose, cellulose acetate phthalate and their mixtures by emulsion solvent evaporation method. Sci Pharm. 2010;78:93–101.PubMedCrossRefGoogle Scholar
  32. 32.
    De Kruif CG, Tuinier R. Polysaccharide protein interactions. Food Hydrocolloids. 2001;15:555–63.CrossRefGoogle Scholar
  33. 33.
    Dickinson E. Stability and rheological implications of electrostatic milk protein-polysaccharide interactions. Trends Food Sci Technol. 1998;9:347–54.CrossRefGoogle Scholar
  34. 34.
    Syrbe A, Bauer WJ, Klostermeyer N. Polymer science concepts in dairy systems—an overview of milk protein and food hydrocolloid interaction. Int Dairy J. 1998;8:179–93.CrossRefGoogle Scholar
  35. 35.
    Lee SJ, Rosenberg M. Microencapsulation of theophylline in whey proteins: effects of core-to-wall ratio. Int J Pharm. 2000;205:147–58.PubMedCrossRefGoogle Scholar
  36. 36.
    Chow AHL, Ho SSS, Tong HHY, Ma HHM. Parameters affecting in-liquid drying microencapsulation and release rate of cefaclor. Int J Pharm. 1998;172:113–25.CrossRefGoogle Scholar
  37. 37.
    Pamujula S, Richard AG, Kishore V, Mandal TK. Preparation and in vitro characterization of amifostine biodegradable microcapsules. Eur J Pharm Biopharm. 2004;57:213–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Ashford M, Fell J, Attwood D, Sharma H, Woodhead P. Studies on pectin formulations for colonic drug delivery. J Control Release. 1994;30:225–32.CrossRefGoogle Scholar
  39. 39.
    Rubinstein A, Radai R, Ezra M, Pathak S, Rokeam JS. In vitro evaluation of calcium pectinate: a potential colon specific drug delivery carrier. Pharm Res. 1993;10:258–63.PubMedCrossRefGoogle Scholar
  40. 40.
    Sparks RE, Jacobs IC, Mason NS. Microencapsulation. In: Avis KE, Shukla AJ, Chang R-K, editors. Pharmaceutical unit operations—coating. Buffalo Grove: Interpharm; 1999. p. 177–222.Google Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2012

Authors and Affiliations

  • Marcela M. Baracat
    • 1
  • Adriana M. Nakagawa
    • 2
  • Rúbia Casagrande
    • 1
  • Sandra R. Georgetti
    • 1
  • Waldiceu A. VerriJr
    • 3
  • Osvaldo de Freitas
    • 2
  1. 1.Department of Pharmaceutical Sciences, University HospitalLondrina State UniversityLondrinaBrazil
  2. 2.Departament of Pharmaceutical SciencesFaculty of Pharmaceutical Sciences of Ribeirão PretoSao PauloBrazil
  3. 3.Departamento de Patologia, Centro de Ciências BiológicasUniversidade Estadual de LondrinaLondrinaBrazil

Personalised recommendations