Skip to main content
Log in

Preparation and Characterization of Microcapsules Based on Biodegradable Polymers: Pectin/Casein Complex for Controlled Drug Release Systems

  • Research Paper
  • Theme: Advanced Technologies for Oral Controlled Release
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Controlled release of drugs is an important strategy to diminish the drug dose and adverse side effects. Aqueous mixtures of polysaccharides and proteins are usually unstable above a certain biopolymer concentration and phase separation occurs either because of repulsive (segregative) or attractive (associative) interactions. Herein, pectin/casein microcapsules were prepared by complex coacervation aiming at prolonged drug release. The morphological characteristics, particle size, distribution, and release kinetics of microcapsules were studied using as a model the hydrophilic drug acetaminophen. It was detected that complexation of pectin/casein particles occurs at pH values lower than 6, resulting in the formation of spherical particles after spray drying. Microcapsules had a mean diameter of 3.138 and 4.929 μm without drug, and of 4.680 and 5.182 μm with drug using USP and 8003 pectin, respectively. The in vitro release of acetaminophen from microcapsules was slow and the drug release mechanism was controlled by diffusion following first-order kinetics. There was greater release of acetaminophen in simulated gastric fluid than simulated intestinal fluid conditions. Concluding, the polymeric system present herein seemed to be appropriate for a prolonged release of acetaminophen throughout the gastrointestinal tract. Nevertheless, it is likely that it is a promising pectin/casein complex for lipossoluble drugs, which merits further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. Bruschi ML, Cardoso MLC, Lucchesi MB, Gremião MPD. Gelatin microparticles containing propolis obtained by spray-drying technique: preparation and characterization. Int J Pharm. 2003;264:45–55.

    Article  PubMed  CAS  Google Scholar 

  2. Stenekes RJH, Franssen O, Van Bommel EMG, Cromelin DJA, Hennink WE. The use of aqueous PEG/Dextran phase separation for the preparation of dextran microspheres. Int J Pharm. 1999;183:29–32.

    Article  PubMed  CAS  Google Scholar 

  3. Rossler B, Kreuter J, Scherer D. Collagen microparticles:preparation and properties. J Microencapsul. 1995;12:49–57.

    Article  PubMed  CAS  Google Scholar 

  4. Wu H, Wang S, Fang H, Zan X, Zhang J, Wan Y. Chitosan-polycaprolactone copolymer microspheres for transforming growth factor-β1 delivery. Colloids Surf B: Biointerfaces. 2011;82:602–8.

    Article  CAS  Google Scholar 

  5. Liu R, Ma G-H, Wan Y-H, Su Z-G. Influence of process parameters on the size distribution of PLA microcapsules prepared by combining membrane emulsification technique and double emulsion–solvent evaporation method. Colloids Surf B: Biointerfaces. 2005;45:144–53.

    Article  CAS  Google Scholar 

  6. Baracat MM, Nakagawa A, Freitas LAP, Freitas O. Microcapsule processing in a spouted bed. Can J Chem Eng. 2004;82:134–41.

    Article  CAS  Google Scholar 

  7. Rediguieri CF, Freitas O, Lettinga MP, Tuinier R. Thermodynamic incompatibility and complex formation in pectin/caseinate mixtures. Biomacromolecules. 2007;8:3345–54.

    Article  PubMed  CAS  Google Scholar 

  8. Saravanan M, Rao KP. Pectin–gelatin and alginate–gelatin complex coacervation for controlled drug delivery: influence of anionic polysaccharides and drugs being encapsulated on physicochemical properties of microcapsules. Carbohydr Polym. 2010;80:808–16.

    Article  CAS  Google Scholar 

  9. Heidebach T, Först P, Kulozik U. Influence of casein-based microencapsulation on freeze-drying and storage of probiotic cells. J Food Eng. 2010;98:309–16.

    Article  CAS  Google Scholar 

  10. Jones OG, Lesmes U, Dubin P, McClements DJ. Effect of polysaccharide charge on formation and properties of biopolymer nanoparticles created by heat treatment of β-lactoglobulin-pectin complexes. Food Hydrocolloids. 2010;24:374–83.

    Article  CAS  Google Scholar 

  11. Tromp RH, de Kruif CG, van Eijk M, Rolin C. On the mechanism of stabilization of acidified milk drinks by pectin. Food Hydrocolloids. 2004;18:565–72.

    Article  CAS  Google Scholar 

  12. Antonov YA, Grinberg VY, Tolstouzov VB. Incompatibility of proteins and polysaccharides in aqueous media. Vysokomol Soedin. 1976;18:566–9.

    CAS  Google Scholar 

  13. Amice-Quemeneur N, Haluk J-P, Hardy J, Kravtchenko TP. Influence of the acidification process on the colloidal stability of acidic milk drinks prepared from reconstituted nonfat dry milk. J Dairy Sci. 1995;78:2683–90.

    Article  CAS  Google Scholar 

  14. Maroziene A, de Kruif CG. Interaction of pectin and casein micelles. Food Hydrocolloids. 2000;14:391–4.

    Article  CAS  Google Scholar 

  15. Tuinier R, Rolin C, de Kruif CG. Eletroabsorption of pectin in to casein micelles. Biomacromolecules. 2002;3:632–8.

    Article  PubMed  CAS  Google Scholar 

  16. Matia-Merino L, Lau K, Dickinson E. Effects of low-methoxyl amidated pectin and ionic calcium on rheology and microstructure of acid-induced sodium caseinate gels. Food Hydrocolloids. 2004;18:271–82.

    Article  CAS  Google Scholar 

  17. Pereyra R, Schmidt KA, Wicker L. Interaction and stabilization of acidified casein dispersions with low and high methoxyl pectins. J Agric Food Chem. 1997;45:3448–51.

    Article  CAS  Google Scholar 

  18. Sopimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release. 2001;70:1–20.

    Article  Google Scholar 

  19. Ortiz SEM, Mauri A, Monterrey-Quintero ES, Trindade MA, Santana AS, Favaro-Trindade CS. Production and properties of casein hydrolysate microencapsulated by spray drying with soybean protein isolate. Food Sci Technol. 2009;42:919–23.

    Google Scholar 

  20. Tunçay M, Franssen O, Hennink WE. A novel preparation method for polymeric microparticles without the use of organic solvents. Int J Pharm. 1998;168:1–7.

    Article  Google Scholar 

  21. Makino K, Fujita Y, Takao K-I, Kobayashi S, Ohshima H. Preparation and properties of thermosensitive hydrogel microcapsules. Colloids Surf. 2001;21:259–63.

    Article  CAS  Google Scholar 

  22. Xie H-Q, Xiang Q. Surface-graft polymerization of doped polyaniline with hydrophilic monomers. Eur Polym J. 2000;36:509–17.

    Article  CAS  Google Scholar 

  23. Lee J-H, Park TG, Choi H-K. Effect of formulation and processing variables on the characteristics of microspheres for water-soluble drugs prepared by W/O/O double emulsion solvent diffusion method. Int J Pharm. 2000;196:75–83.

    Article  PubMed  CAS  Google Scholar 

  24. Remuñán-Lopez C, Bodmeier R. Effect of formulation and process variables on the formation of chitosan–gelatin coacervates. Int J Pharm. 1996;135:63–72.

    Article  Google Scholar 

  25. Carrasquillo KG, Stanley AM, Aponte-Carro JC, Jésus PD, Constantino HR, Bosques CJ, Griebenow K. Non-aqueous encapsulation of excipient-stabilized spray-freeze dried BSA into poly (lactide-co-glycolide) microspheres results in release of native protein. J Control Release. 2001;76:199–208.

    Article  PubMed  CAS  Google Scholar 

  26. Rácz I, Drédan J, Antal I, Gondár E. Comparative evaluation of microcapsules prepared by fluidization atomization and melt coating process. Drug Dev Ind Pharm. 1997;23:583–7.

    Article  Google Scholar 

  27. Gouin S. Microencapsulation: industrial appraisal of existing technologies and trends. Trends Food Sci Technol. 2004;15:330–47.

    Article  CAS  Google Scholar 

  28. Dong Z-J, Xia S-Q, Hua S, Hayat K, Zhang X-M. Optimization of cross-linking parameters during production of transglutaminase-hardened spherical multinuclear microcapsules by complex coacervation. Colloids Surf B: Biointerfaces. 2008;63:41–7.

    Article  CAS  Google Scholar 

  29. Daí C, Wang B, Zhao H, Li B. Factors affecting protein release from microcapsule prepared by liposome in alginate. Colloids Surf B: Biointerfaces. 2005;42:253–8.

    Article  Google Scholar 

  30. Freitas O, Mestriner-Jr W, Conceição EC, Baracat MM, Moreschi PE. Preocesso de preparação de complexos biodegradáveis, complexos biodegradáveis assim obtidos e método para avaliação da eficiência mastigatória; 2007. Brazil Patent, PI 0700557-1.

  31. Dash V, Mishra SK, Singh M, Goyal AK, Rath G. Release kinetic studies of aspirin microcapsules from ethyl cellulose, cellulose acetate phthalate and their mixtures by emulsion solvent evaporation method. Sci Pharm. 2010;78:93–101.

    Article  PubMed  CAS  Google Scholar 

  32. De Kruif CG, Tuinier R. Polysaccharide protein interactions. Food Hydrocolloids. 2001;15:555–63.

    Article  Google Scholar 

  33. Dickinson E. Stability and rheological implications of electrostatic milk protein-polysaccharide interactions. Trends Food Sci Technol. 1998;9:347–54.

    Article  CAS  Google Scholar 

  34. Syrbe A, Bauer WJ, Klostermeyer N. Polymer science concepts in dairy systems—an overview of milk protein and food hydrocolloid interaction. Int Dairy J. 1998;8:179–93.

    Article  CAS  Google Scholar 

  35. Lee SJ, Rosenberg M. Microencapsulation of theophylline in whey proteins: effects of core-to-wall ratio. Int J Pharm. 2000;205:147–58.

    Article  PubMed  CAS  Google Scholar 

  36. Chow AHL, Ho SSS, Tong HHY, Ma HHM. Parameters affecting in-liquid drying microencapsulation and release rate of cefaclor. Int J Pharm. 1998;172:113–25.

    Article  CAS  Google Scholar 

  37. Pamujula S, Richard AG, Kishore V, Mandal TK. Preparation and in vitro characterization of amifostine biodegradable microcapsules. Eur J Pharm Biopharm. 2004;57:213–8.

    Article  PubMed  CAS  Google Scholar 

  38. Ashford M, Fell J, Attwood D, Sharma H, Woodhead P. Studies on pectin formulations for colonic drug delivery. J Control Release. 1994;30:225–32.

    Article  CAS  Google Scholar 

  39. Rubinstein A, Radai R, Ezra M, Pathak S, Rokeam JS. In vitro evaluation of calcium pectinate: a potential colon specific drug delivery carrier. Pharm Res. 1993;10:258–63.

    Article  PubMed  CAS  Google Scholar 

  40. Sparks RE, Jacobs IC, Mason NS. Microencapsulation. In: Avis KE, Shukla AJ, Chang R-K, editors. Pharmaceutical unit operations—coating. Buffalo Grove: Interpharm; 1999. p. 177–222.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the financial support of CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), Brazil. WAVJ receives a CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) fellowship, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcela M. Baracat.

Additional information

Guest Editors: Michael Repka, Joseph Reo, Linda Felton, and Stephen Howard

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baracat, M.M., Nakagawa, A.M., Casagrande, R. et al. Preparation and Characterization of Microcapsules Based on Biodegradable Polymers: Pectin/Casein Complex for Controlled Drug Release Systems. AAPS PharmSciTech 13, 364–372 (2012). https://doi.org/10.1208/s12249-012-9752-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-012-9752-0

KEY WORDS

Navigation