AAPS PharmSciTech

, Volume 11, Issue 4, pp 1552–1557 | Cite as

Investigation into the Degree of Variability in the Solid-State Properties of Common Pharmaceutical Excipients—Anhydrous Lactose

  • John F. Gamble
  • Wing-Sin Chiu
  • Vivienne Gray
  • Helen Toale
  • Michael Tobyn
  • Yongmei Wu
Research Article Theme: Advances in Pharmaceutical Excipients Research and Use: Novel Materials, Functionalities and Testing


This paper reports the batch-to-batch and vendor-to-vendor variations in the solid-state characteristics of multiple batches of lactose anhydrous from each of three vendors and the subsequent impact of these differences on processability and/or functionality.

Key words

compaction excipients lactose physical properties variability 



The authors would like to thank Borculo Domo, DMV-Fonterra and Kerry Bioscience for the donation of the batches of lactose anhydrous used for this study. The authors would also like to thank Dr. Mridul Majumder (Pharmaterials Ltd.), Dr. Nancy Barbour, Dr. Peter Timmins and Dr. Michael Leane (all Bristol-Myers Squibb) for their support during this study.


  1. 1.
    Doelker E, Mordier D, Iten H, Humbert-Droz P. Comparative tableting properties of sixteen microcrystalline celluloses. Drug Dev Ind Pharm. 1987;13(9):1847–75.CrossRefGoogle Scholar
  2. 2.
    Landin M, Martinez-Pacheco R, Gómez-Amoza J, Souto C, Concheiro A, Rowe R. Influence of microcrystalline cellulose source and batch variation on the tabletting behaviour and stability of prednisone formulations. Int J Pharm. 1993;91(2):143–9.CrossRefGoogle Scholar
  3. 3.
    Moreton C. Functionality and performance of excipients in a quality-by-design world: obtaining information on excipient variability for formulation design space. Am Pharm Rev. 2009;12(5):28–33.Google Scholar
  4. 4.
    Amidon, G.E. Physical and Mechanical Property Characterization of Powders, in: Physical Characterization of Pharmaceutical Solids (Drugs and the Pharmaceutical Sciences, Volume 70) Eds: Brittain, H.G. 1995.Google Scholar
  5. 5.
    Rios, M. Debating Excipient Functionality. Pharm Technol 2006.Google Scholar
  6. 6.
    Vromans H, De Boer AH, Bolhuis GK, Lerk CF, Kussendrager KD. Studies on tableting properties of lactose. Part I. The effect of initial particle size on binding properties and dehydration characteristics of lactose. Acta Pharm Suec. 1985;22:163–72.PubMedGoogle Scholar
  7. 7.
    Vromans H, Bolhuis GK, Lerk CF, Kussendrager KD, Bosch H. Studies on tableting properties of lactose. VI. Consolidation and compaction of spray-dried amorphous lactose. Acta Pharm Suec. 1986;23:231–40.PubMedGoogle Scholar
  8. 8.
    Vromans H, Bolhuis GK, Lerk CF, Van De Biggelaar H, Bosch H. Studies on tableting properties of lactose. VII. The effect of variations in primary particle size and percentage of amorphous lactose in spray dried lactose products. Int J Pharm. 1987;35:29–37.CrossRefGoogle Scholar
  9. 9.
    Bolhuis GK, Zuurman K. Tableting properties of experimental and commercially available lactose granulations for direct compression. Drug Dev Ind Pharm. 1995;21:2057–71.CrossRefGoogle Scholar
  10. 10.
    Ziffels S, Steckel H. Influence of amorphous content on compaction behaviour of anhydrous α-lactose. Int J Pharm. 2010;387:71–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Guo, J. Lactose in Pharmaceutical Applications. Drug Del Technol. 2004. Google Scholar
  12. 12.
    Handbook of Pharmaceutical Excipients, 5th Edition, Pharmaceutical Press, 2006.Google Scholar
  13. 13.
    Wirth DD, Baertschi SW, Johnson RA, Maple SR, Miller MS, Hallenbeck DK, et al. Maillard reaction of lactose and fluoxetine hydrochloride, a secondary amine. J Pharm Sci. 1998;87:31–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Castello RA, Mattocks AM. Discoloration of tablets containing amines and lactose. J Pharm Sci. 1962;45:2–5.Google Scholar
  15. 15.
    Newell HE, Buckton G, Butler DA, Thielmann F, Williams DR. The use of inverse phase gas chromatography to measure the surface energy of crystalline, amorphous, and recently milled lactose. Pharm Res. 2001;18(5):662–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Grimsey IM, Feeley JC, York P. Analysis of the surface energy of pharmaceutical powders by inverse gas chromatography. J Pharm Sci. 2002;91(2):571–83.CrossRefPubMedGoogle Scholar
  17. 17.
    Aldeborn, G., Nyström, C. Pharmaceutical powder compaction technology. New York:Marcel Dekker, Inc.; 1996: 302.Google Scholar
  18. 18.
    Roberts RJ, Rowe RC. The effect of the relationship between punch velocity and particle size on the compaction behaviour of materials with varying deformation mechanisms. J Pharm Pharmacol. 1986;38(8):567–71.PubMedGoogle Scholar
  19. 19.
    Lerk CF. Consolidation and compaction of lactose. Drug Dev Ind Pharm. 1993;19(17&18):2359–98.CrossRefGoogle Scholar
  20. 20.
    Rahmouni M, Lenaerts V, Massuelle D, Doelker E, Leroux J. Influence of Physical Parameters and Lubricants on the Compaction Properties of Granulated and Non-granulated Cross-linked High Amylose Start. Chem Pharm Bull. 2002;50(9):1155–62.CrossRefPubMedGoogle Scholar
  21. 21.
    Qiu Z, Stowell JG, Cao W, Morris KR, Byrn SR, Carvajal MT. Effect of milling and compression on the solid-state Maillard reaction. J Pharm Sci. 2005;94(11):2568–80.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2010

Authors and Affiliations

  • John F. Gamble
    • 1
  • Wing-Sin Chiu
    • 1
    • 2
  • Vivienne Gray
    • 1
  • Helen Toale
    • 1
  • Michael Tobyn
    • 1
  • Yongmei Wu
    • 3
  1. 1.Exploratory Biopharmaceutics R&D, Bristol-Myers SquibbMoretonUK
  2. 2.Department of PharmacyUniversity of BathBathUK
  3. 3.Bristol-Myers SquibbNew BrunswickUSA

Personalised recommendations