AAPS PharmSciTech

, Volume 11, Issue 3, pp 1243–1249 | Cite as

Formulation of Dacarbazine-loaded Cubosomes. Part III. Physicochemical Characterization

  • Di Bei
  • Tao Zhang
  • James B. Murowchick
  • Bi-Botti C. Youan
Research Article


The purpose of this study was to investigate the physicochemical properties of dacarbazine-loaded cubosomes. The drug-loaded cubosome nanocarriers were prepared by a fragmentation method and then freeze dried. They were then characterized for size, morphology, thermal behavior, and crystallography using dynamic light scattering, transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and powder X-ray diffraction (PXRD), respectively. The drug loading and encapsulation efficiency were determined by UV spectrophotometry. The results showed that the prepared dacarbazine-loaded cubosomes had mean diameters ranging from 86 to 106 nm. In addition to the TEM, the characteristic peaks from PXRD data suggested that the freeze-dried nanoformulations were indeed cubic in nature. DSC and PXRD analysis suggested the 0.06 or 0.28% w/w actual drug loaded inside cubosomes was in the amorphous or molecular state. These physicochemical characteristics would affect the nanoformulation shelf-life, efficacy, and safety.

Key words

cubosome dacarbazine thermal analysis X-ray diffraction 



Monoolein (GMO) was kindly provided to us by Danisco Cultor (Grindsted, Denmark). We also appreciated the guidance of Dr. Elizabeth Kostoryz (Division of Pharmacology, University of Missouri–Kansas City) for the DLS experiment and the support of Randy Tindall (Electron Microscopy Center, University of Missouri–Columbia) for the electron microscopy. The author acknowledge the helpful and thorough proof reading of this manuscript by Margaret LoGiudice, R.D.H, M.S. (Johnson County Community College, Overland Park, KS)


  1. 1.
    Chiappetta DA, Carcaboso AM, Bregni C, Rubio M, Bramuglia G, Sosnik A. Indinavir-loaded pH-sensitive microparticles for taste masking: toward extemporaneous pediatric anti-HIV/AIDS liquid formulations with improved patient compliance. AAPS PharmSciTech. 2009;10(1):1–6.CrossRefPubMedGoogle Scholar
  2. 2.
    Hancock BC, Zografi G. Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci. 1997;86(1):1–12.CrossRefPubMedGoogle Scholar
  3. 3.
    Abdelkader H, Abdalla OY, Salem H. Formulation of controlled-release baclofen matrix tablets: influence of some hydrophilic polymers on the release rate and in vitro evaluation. AAPS PharmSciTech. 2007;8(4):E100.CrossRefPubMedGoogle Scholar
  4. 4.
    Kaewnopparat S, Sansernluk K, Faroongsarng D. Behavior of freezable bound water in the bacterial cellulose produced by Acetobacter xylinum: an approach using thermoporosimetry. AAPS PharmSciTech. 2008;9(2):701–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Ghassempour A, Rafati H, Adlnasab L, Bashour Y, Ebrahimzadeh H, Erfan M. Investigation of the solid state properties of amoxicillin trihydrate and the effect of powder pH. AAPS PharmSciTech. 2007;8(4):E93.CrossRefPubMedGoogle Scholar
  6. 6.
    Van Eerdenbrugh B, Stuyven B, Froyen L, Van Humbeeck J, Martens JA, Augustijns P, et al. Downscaling drug nanosuspension production: processing aspects and physicochemical characterization. AAPS PharmSciTech. 2009;10(1):44–53.CrossRefPubMedGoogle Scholar
  7. 7.
    Spieth K, Kaufmann R, Dummer R, Garbe C, Becker JC, Hauschild A, et al. Temozolomide plus pegylated interferon alfa-2b as first-line treatment for stage IV melanoma: a multicenter phase II trial of the Dermatologic Cooperative Oncology Group (DeCOG). Ann Oncol. 2008;19(4):801–6.CrossRefPubMedGoogle Scholar
  8. 8.
    Schadendorf D, Ugurel S, Schuler-Thurner B, Nestle FO, Enk A, Brocker EB, et al. Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized phase III trial of the DC study group of the DeCOG. Ann Oncol. 2006;17(4):563–70.CrossRefPubMedGoogle Scholar
  9. 9.
    Lens MB, Eisen TG. Systemic chemotherapy in the treatment of malignant melanoma. Expert Opin Pharmacother. 2003;4(12):2205–11.CrossRefPubMedGoogle Scholar
  10. 10.
    Middleton MR, Grob JJ, Aaronson N, Fierlbeck G, Tilgen W, Seiter S, et al. Randomized phase III study of temozolomide versus dacarbazine in the treatment of patients with advanced metastatic malignant melanoma. J Clin Oncol. 2000;18(1):158–66.PubMedGoogle Scholar
  11. 11.
    Connors TA, Goddard PM, Merai K, Ross WC, Wilman DE. Tumour inhibitory triazenes: structural requirements for an active metabolite. Biochem Pharmacol. 1976;25(3):241–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Shah JC, Sadhale Y, Chilukuri DM. Cubic phase gels as drug delivery systems. Adv Drug Deliv Rev. 2001;47(2–3):229–50.CrossRefPubMedGoogle Scholar
  13. 13.
    Patton JS, Carey MC. Watching fat digestion. Science (New York, NY). 1979;204(4389):145–8.Google Scholar
  14. 14.
    Pebay-Peyroula E, Rummel G, Rosenbusch JP, Landau EM. X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science (New York, NY). 1997;277(5332):1676–81.Google Scholar
  15. 15.
    Landau EM, Rosenbusch JP. Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc Natl Acad Sci USA. 1996;93(25):14532–5.CrossRefPubMedGoogle Scholar
  16. 16.
    Muller RH, Petersen RD, Hommoss A, Pardeike J. Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv Drug Deliv Rev. 2007;59(6):522–30.CrossRefPubMedGoogle Scholar
  17. 17.
    Esposito E, Eblovi N, Rasi S, Drechsler M, Di Gregorio GM, Menegatti E, et al. Lipid-based supramolecular systems for topical application: a preformulatory study. AAPS PharmSci. 2003;5(4):E30.CrossRefPubMedGoogle Scholar
  18. 18.
    Bei D, Marszalek J, Youan BB. Formulation of dacarbazine-loaded cubosomes-part I: influence of formulation variables. AAPS PharmSciTech. 2009;10(3):1032–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Bei D, Marszalek J, Youan BB. Formulation of dacarbazine-loaded cubosomes—part II: influence of process parameters. AAPS PharmSciTech. 2009;10(3):1040–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Hackley VaF CF. The use of nomenclature in dispersion science and technology, NIST recommended practice guide. SP. 2001;960(3):76.Google Scholar
  21. 21.
    Briggs J, Chung H, Caffrey M. The temperature composition phase diagram and mesophase structure characterization of the monoolein/water system. J Phys II France. 1996;6:723–51.CrossRefGoogle Scholar
  22. 22.
    Qiu H, Caffrey M. The phase diagram of the monoolein/water system: metastability and equilibrium aspects. Biomaterials. 2000;21(3):223–34.CrossRefPubMedGoogle Scholar
  23. 23.
    Lutton ES. Phase behavior of aqueous systems of monoglycerides. J Am Oil Chem Soc. 1965;42(12):1068–70.CrossRefPubMedGoogle Scholar
  24. 24.
    Longley W, McIntosh TJ. A bicontinuous tetrahedral structure in a liquid-crystalline lipid. Nature. 1983;303:612–4.CrossRefGoogle Scholar
  25. 25.
    Hyde ST, Anderson S, Ericsson B, Larsson K. A cubic structure consisting of a lipid bilayer forming an infinite periodic minimum surface of the gyroid type in the glyceryl monooleate-water system. Z Kristallogr. 1984;168:213–9.CrossRefGoogle Scholar
  26. 26.
    Boyd BJ. Characterisation of drug release from cubosomes using the pressure ultrafiltration method. Int J Pharm. 2003;260(2):239–47.CrossRefPubMedGoogle Scholar
  27. 27.
    Freeman HC, Hutchinson ND. The crystal structure of the anti-tumor agent 5-(3, 3-dimethyl-1-triazenyl)imidazole-4-carboxamide (NSC-45388). Acta Cryst B. 1979;35:2051.CrossRefGoogle Scholar
  28. 28.
    Yaghmur A, Laggner P, Almgren M, Rappolt M. Self-assembly in monoelaidin aqueous dispersions: direct vesicles to cubosomes transition. PLoS ONE. 2008;3(11):e3747.CrossRefPubMedGoogle Scholar
  29. 29.
    Esposito E, Cortesi R, Drechsler M, Paccamiccio L, Mariani P, Contado C, et al. Cubosome dispersions as delivery systems for percutaneous administration of indomethacin. Pharm Res. 2005;22(12):2163–73.CrossRefPubMedGoogle Scholar
  30. 30.
    Liu TY, Hu SH, Liu KH, Shaiu RS, Liu DM, Chen SY. Instantaneous drug delivery of magnetic/thermally sensitive nanospheres by a high-frequency magnetic field. Langmuir. 2008;24(23):13306–11.CrossRefPubMedGoogle Scholar
  31. 31.
    Landh T. Phase behavior in the system pine oil monoglycerides-poloxamer 407-water at 20 C. J Phys Chem. 1994;98:8453–67.CrossRefGoogle Scholar
  32. 32.
    Israelachvili JN. Intermolecular and surface forces. London, UK: Academic; 1991.Google Scholar
  33. 33.
    Anderson DM, Gruner SM, Leibler S. Geometrical aspects of the frustration in the cubic phases of lyotropic liquid crystals. Proc Natl Acad Sci USA. 1988;85(15):5364–8.CrossRefPubMedGoogle Scholar
  34. 34.
    Siekmann B, Bunjes H, Koch MH, Westesen K. Preparation and structural investigations of colloidal dispersions prepared from cubic monoglyceride-water phases. Int J Pharm. 2002;244(1–2):33–43.CrossRefPubMedGoogle Scholar
  35. 35.
    Worle G, Drechsler M, Koch MH, Siekmann B, Westesen K, Bunjes H. Influence of composition and preparation parameters on the properties of aqueous monoolein dispersions. Int J Pharm. 2007;329(1–2):150–7.CrossRefPubMedGoogle Scholar
  36. 36.
    Gustafsson J, Ljusberg-Wahren H, Almgren M, Larsson K. Submicron particles of reversed lipid phases in water stabilized by a nonionic amphiphilic polymer. Langmuir. 1997;13:6964–71.CrossRefGoogle Scholar
  37. 37.
    Hui SW, Stewart TP, Boni LT, Yeagle PL. Membrane fusion through point defects in bilayers. Science (New York, NY). 1981;212(4497):921–3.Google Scholar
  38. 38.
    Amar-Yuli I, Wachtel E, Shoshan EB, Danino D, Aserin A, Garti N. Hexosome and hexagonal phases mediated by hydration and polymeric stabilizer. Langmuir. 2007;23(7):3637–45.CrossRefPubMedGoogle Scholar
  39. 39.
    Koegler WS, Patrick C, Cima MJ, Griffith LG. Carbon dioxide extraction of residual chloroform from biodegradable polymers. J Biomed Mater Res. 2002;63(5):567–76.CrossRefPubMedGoogle Scholar
  40. 40.
    Mumper RJ, Jay M. Poly(L-lactic acid) microspheres containing neutron-activatable holmium-165: a study of the physical characteristics of microspheres before and after irradiation in a nuclear reactor. Pharm Res. 1992;9(1):149–54.CrossRefPubMedGoogle Scholar
  41. 41.
    B'Hymer C. Residual solvent testing: a review of gas-chromatographic and alternative techniques. Pharm Res. 2003;20(3):337–44.CrossRefPubMedGoogle Scholar
  42. 42.
    Freitas S, Merkle HP, Gander B. Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology. J Control Release. 2005;102(2):313–32.CrossRefPubMedGoogle Scholar
  43. 43.
    Zielhuis SW, Nijsen JF, Dorland L, Krijger GC, van Het Schip AD, Hennink WE. Removal of chloroform from biodegradable therapeutic microspheres by radiolysis. Int J Pharm. 2006;315(1–2):67–74.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2010

Authors and Affiliations

  • Di Bei
    • 1
  • Tao Zhang
    • 1
  • James B. Murowchick
    • 2
  • Bi-Botti C. Youan
    • 1
  1. 1.Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmaceutical SciencesUniversity of Missouri-Kansas City School of PharmacyKansas CityUSA
  2. 2.Department of GeosciencesUniversity of MissouriKansas CityUSA

Personalised recommendations