Advertisement

AAPS PharmSciTech

, Volume 11, Issue 3, pp 1164–1170 | Cite as

Novel Vitamin and Gold-Loaded Nanofiber Facial Mask for Topical Delivery

  • Anahita Fathi-Azarbayjani
  • Lin Qun
  • Yew Weng Chan
  • Sui Yung Chan
Research Article

Abstract

l-ascorbic acid has been widely used in cosmetic and dermatological products because of its ability to scavenge free radicals and destroy oxidizing agents. However, it is chemically unstable and can easily be oxidized. The current cosmetic facial masks available in the market are pre-moistened, which means that the aqueous fluid content of the mask may oxidize some of the unstable active ingredients such as ascorbic acid. This work presents an anti-wrinkle nanofiber face mask containing ascorbic acid, retinoic acid, gold nanoparticles, and collagen. This novel face mask will only be wetted when applied to the skin, thus enhancing product stability. Once moistened, the content of the mask will gradually dissolve and release the active ingredients and ensure maximum skin penetration. The high surface area-to-volume ratio of the nanofiber mask will ensure maximum contact with the skin surface and help to enhance the skin permeation to restore its healthy appearance. Electrospun fiber mats may provide an attractive alternative to the commercial facial cotton masks.

KEY WORDS

ascorbic acid cis-retinoic acid collagen gold nanoparticle topical facial mask 

References

  1. 1.
    Segall AI, Moyano MA. Stability of vitamin C derivatives in topical formulations containing lipoic acid, vitamins A and E. Int J Cosmet Sci. 2008;30:453–8.CrossRefPubMedGoogle Scholar
  2. 2.
    Gaspar LR, Campo PMBGM. Photostability and efficacy studies of topical formulations containing UV-filters combination and vitamins A C and E. Int J Pharm. 2007;343:181–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Pinnell SR, Madey DL. Topical vitamin C in skin care. Aesthet Surg J. 1998;18:468–70.CrossRefPubMedGoogle Scholar
  4. 4.
    Farahmand S, Tajerzadeh H, Farboud ES. Formulation and evaluation of a vitamin C multiple emulsion. Pharm Dev Technol. 2006;11:255–61.CrossRefPubMedGoogle Scholar
  5. 5.
    Rozman B, Gašperlin M. Stability of vitamins C and E in topical microemulsions for combined antioxidant therapy. Drug Deliv. 2007;14:235–45.CrossRefPubMedGoogle Scholar
  6. 6.
    Kogan A, Garti N. Microemulsions as transdermal drug delivery vehicles. Adv Colloid Interface Sci. 2006;123–126:369–85.CrossRefPubMedGoogle Scholar
  7. 7.
    Watson REB, Long SP, Bowden JJ, Bastrilles JY, Barton SP, Griffiths CEM. Repair of photoaged dermal matrix by topical application of a cosmetic ‘antiageing’ product. Br J Dermatol. 2008;158:472–7.CrossRefPubMedGoogle Scholar
  8. 8.
    Cao C, Wan S, Jiang Q, Amaral A, Lu S, Hu G, et al. All-trans retinoic acid attenuates ultraviolet radiation-induced down-regulation of aquaporin-3 and water permeability in human keratinocytes. J Cell Physiol. 2008;215:506–16.CrossRefPubMedGoogle Scholar
  9. 9.
    Kang S, Voorhees JJ. Photoaging therapy with topical tretinoin, an evidence based analysis. J Am Acad Dermatol. 1998;39:S55–61.CrossRefPubMedGoogle Scholar
  10. 10.
    Fisher GJ, Kang S, Varani J, Bata-Csorgo Z, Wan Y, Datta S, et al. Mechanisms of photoaging and chronological skin aging. Arch Dermatol. 2002;138:1462–70.CrossRefPubMedGoogle Scholar
  11. 11.
    Thielitz A, Abdel-Naser MB, Fluhr JW, Zouboulis CC, Gollnick H. Topical retinoids in acne: An evidence-based overview. J Dtsch Dermatol Ges. 2008;6:1023–31.CrossRefPubMedGoogle Scholar
  12. 12.
    Lin HS, Chean CS, Ng YY, Chan SY, Ho PC. 2-Hydroxypropyl-b-cyclodextrin increases aqueous solubility and photostability of all-trans-retinoic acid. J Clin Pharm Ther. 2000;25:265–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Montassier P, Duchene D, Poelman MC. Inclusion complexes of tretinoin with cyclodextrins. Int J Pharm. 1997;153:199–209.CrossRefGoogle Scholar
  14. 14.
    Hu LD, Tang X, Cui FD. Solid lipid nanoparticles (SLNs) to improve oral bioavailability of poorly soluble drugs. J Pharm Pharmocol. 2004;56:1527–35.CrossRefGoogle Scholar
  15. 15.
    Sonavane G, Tomoda K, Sano A, Ohshima H, Terada H, Makino K. In vitro permeation of gold nanoparticles through rat skin and rat intestine: Effect of particle size. Colloids Surf B Biointerfaces. 2008;65:1–10.CrossRefPubMedGoogle Scholar
  16. 16.
    Menon GK, Brandsma JL, Schwartz PM. Particle-mediated gene delivery and human skin: Ultrastructural observations on stratum corneum barrier structures. Skin Pharmacol Physiol. 2007;20:141–7.CrossRefPubMedGoogle Scholar
  17. 17.
    Mulholland WJ, Arbuthnott EAH, Bellhouse BJ, Cornhill JF, Austyn JM, Kendall MAF, et al. Multiphoton high-resolution 3d imaging of langerhans cells and keratinocytes in the mouse skin model adopted for epidermal powdered immunization. J Invest Dermatol. 2006;126:1541–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Dean HJ, Haynes J, Schmaljohn C. The role of particle-mediated DNA vaccines in biodefense preparedness. Adv Drug Deliv Rev. 2005;57:1315–42.CrossRefPubMedGoogle Scholar
  19. 19.
    Mannila J, Järvinen T, Järvinen K, Tarvainen M, Jarho P. Effects of RM-β-CD on sublingual bioavailability of Δ9-tetrahydrocannabinol in rabbits. Eur J Pharm Sci. 2005;26:71–7.CrossRefPubMedGoogle Scholar
  20. 20.
    de Araujo DR, Tsuneda SS, Cereda CMS, Carvalho FDGF, Preté PSC, Fernandes SA, et al. Development and pharmacological evaluation of ropivacine-2- hydroxypropyl-b-cyclodextrin inclusion complex. Eur J Pharm Sci. 2008;33:60–71.PubMedGoogle Scholar
  21. 21.
    Pfitzner I, Francz PI, Biesalski UK. Carotenoid: methyl-b3-cyclodextrin formulations: An improved method for supplementation of cultured cells. Biochim Biophys Acta. 2000;1474:163–8.PubMedGoogle Scholar
  22. 22.
    Taepaiboon P, Rungsardthong U, Supaphol P. Drug-loaded electrospun mats of poly (vinyl alcohol) fibres and their release characteristics of four model drugs. Nanotechnology. 2006;17:2317–29.CrossRefGoogle Scholar
  23. 23.
    Kenawy E-R, Abdel-Hay FI, El-Newehy MH, Wnek GE. Controlled release of ketoprofen from electrospun poly(vinyl alcohol) nanofibers. Mater Sci Eng A. 2007;459:390–6.CrossRefGoogle Scholar
  24. 24.
    Verreck G, Chun I, Rosenblatt J, Peeters J, Dijck AV, Mensch J, et al. Incorporation of drugs in an amorphous state into electrospun nanofibers composed of water-insoluble, nonbiodegradable polymer. J Control Release. 2003;92:349–60.CrossRefPubMedGoogle Scholar
  25. 25.
    Taepaiboon P, Rungsardthong U, Supaphol P. Vitamin-loaded electrospun cellulose acetate nanofiber mats as transdermal and dermal therapeutic agents for vitamin A acid and vitamin E. Eur J Pharm Biopharm. 2007;67:387–97.CrossRefPubMedGoogle Scholar
  26. 26.
    Bai J, Li Y, Yang S, Du J, Wang S, Zheng J, et al. A simple and effective route for the preparation of poly (vinylalcohol) (PVA) nanofibers containing gold nanoparticles by electrospinning method. Solid State Commun. 2007;141:292–5.CrossRefGoogle Scholar
  27. 27.
    Wang Y, Li Y, Sun G, Zhang G, Liu H, Du J, et al. Fabrication of Au/PVP nanofiber composites by electrospinning. J Appl Polym Sci. 2007;105:3618–22.CrossRefGoogle Scholar
  28. 28.
    Kligman AM, Christophers E. Preparation of isolated sheets of human stratum corneum. Arch Dermatol. 1963;88:702–5.PubMedGoogle Scholar
  29. 29.
    Gaspar LR, Campos PM. Evaluation of the photostability of different UV filter combinations in a sunscreen. Int J Pharm. 2006;307:123–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Bai J, Yang Q, Li M, Wang S, Zhang C, Li Y. Preparation of composite nanofibers containing gold nanoparticles by using poly (N-vinylpyrrolidone) and β- cyclodextrin. Mater Chem Phys. 2008;111:205–8.CrossRefGoogle Scholar
  31. 31.
    Şanlı O, Ay N, Işıklan N. Release characteristics of diclofenac sodium from poly (vinyl alcohol)/sodium alginate and poly (vinyl alcohol)-grafted-poly (acrylamide)/sodium alginate blend beads. Eur J Pharm Biopharm. 2007;65:204–14.CrossRefPubMedGoogle Scholar
  32. 32.
    Hong J, Hong CK, Shim SE. Synthesis of polystyrene microspheres by dispersion polymerization using poly (vinyl alcohol) as a steric stabilizer in aqueous alcohol media. Colloids Surf A Physicochem Eng Asp. 2007;302:225–33.CrossRefGoogle Scholar
  33. 33.
    Arndt KF, Richter A, Ludwig S, Zimmermann J, Kressler J, Kuckling D, et al. Poly (vinyl alcohol)/poly (acrylic acid) hydrogels: FT-IR spectroscopic characterization of crosslinking reaction and work at transition point. Acta Polym. 1999;50:383–90.CrossRefGoogle Scholar
  34. 34.
    Khanna PK, Gokhale R, Subbarao VVVS, Kasi Vishwanath A, Das BK, Satyanarayana CVV. A simple and effective route for the preparation of poly (vinylalcohol) (PVA) nanofibers containing gold nanoparticles by electrospinning method. Mater Chem Phys. 2005;92:229–33.CrossRefGoogle Scholar
  35. 35.
    Garnero C, Longhi M. Study of ascorbic acid interaction with hydroxypropyl-β-cyclodextrin and triethanolamin, separately and in combination. J Pharm Biomed Anal. 2007;45:536–45.CrossRefPubMedGoogle Scholar
  36. 36.
    Sionkowska A, Skopiska J, Wishiewski M. Photochemical stability of collagen/poly (vinyl alcohol) blends. Polymer Degrad Stability. 2004;83:117–25.CrossRefGoogle Scholar
  37. 37.
    Fathi-Azarbayjani A, Chan SY. Single and multi-layered nanofibers for rapid and controlled drug delivery. Chem Pharm Bull. 2010;58:143–6.CrossRefPubMedGoogle Scholar
  38. 38.
    Angberg M, Nyström C, Castensson S. Evaluation of heat-conduction microcalorimetry in pharmaceutical stability studies VII. Oxidation of ascorbic acid in aqueous solution. Int J Pharm. 1993;90:19–33.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2010

Authors and Affiliations

  • Anahita Fathi-Azarbayjani
    • 1
  • Lin Qun
    • 1
  • Yew Weng Chan
    • 2
  • Sui Yung Chan
    • 1
  1. 1.Department of PharmacyNational University of SingaporeSingaporeSingapore
  2. 2.Department of AnesthesiologySingapore General HospitalSingaporeSingapore

Personalised recommendations