Advertisement

AAPS PharmSciTech

, Volume 11, Issue 2, pp 663–671 | Cite as

Rehydrated Lyophilized Rifampicin-Loaded mPEG–DSPE Formulations for Nebulization

  • Juma Masoud Abdulla Abdulla
  • Yvonne Tze-Fung Tan
  • Yusrida Darwis
Research Article

Abstract

Rifampicin-loaded nanoparticles were prepared using two different molecular weights of poly-(ethylene oxide)-block-distearoyl phosphatidyl-ethanolamine (mPEG2000–DSPE and mPEG5000–DSPE) polymers. Particle sizes of all formulations studied were in the range of 162–395 nm. The entrapment efficiency (EE) was not affected by the copolymer’s molecular weight, and the highest EE (100%) was obtained with drug to copolymer ratio of 1:5. The differential scanning calorimetry (DSC) thermograms showed Tg of rifampicin-loaded PEG–DSPE nanoparticles that shifted to a lower value, indicating entrapment of rifampicin in polymer matrix. The Fourier transformed infrared spectra revealed no chemical interactions between the drug and both copolymers. The in vitro drug release from the formulations occurred over 3 days and followed first-order release kinetic and Higuchi diffusion model. The nebulization of rehydrated lyophilized rifampicin mPEG–DSPE formulations had mass median aerodynamic diameter of 2.6 µm and fine particle fraction of 42%. The aerodynamic characteristic of the preparations was not influenced by the molecular weight of the copolymers. Therefore, it is suggested that both mPEG–DSPE are promising candidates as rifampicin carrier for pulmonary delivery.

Key words

mPEG–DSPE polymer nebulization rifampicin 

Notes

Acknowledgment

The authors would like to thank Universiti Sains Malaysia, Penang, Malaysia, for providing the research grant to support this work.

References

  1. 1.
    World Health Organization. Tuberculosis facts 200. Geneva: WHO; 2007.Google Scholar
  2. 2.
    Burman WJ, Cohn DL, Rietmeijer CA, Judson FN, Sbarbaro JA, Reves RR. Noncompliance with directly observed therapy for tuberculosis: epidemiology and effect on the outcome of treatment. Chest. 1997;111:1168–73.CrossRefPubMedGoogle Scholar
  3. 3.
    Fu J, Fiegel J, Krauland E, Hanes J. New polymeric carriers for controlled drug delivery following inhalation or injection. Biomaterials. 2002;23:4425–33.CrossRefPubMedGoogle Scholar
  4. 4.
    Prabakaran D, Singh P, Jaganathan KS, Vyas SP. Osmotically regulated asymmetric capsular systems for simultaneous sustained delivery of anti-tubercular drugs. J Control Release. 2004;95:239–48.CrossRefPubMedGoogle Scholar
  5. 5.
    Shishoo CJ, Shah SA, Rathod IS, Savale SS, Vora MJ. Impaired bioavailability of rifampicin in presence of isoniazid from fixed dose combination (FDC) formulation. Int J Pharm. 2001;228:53–67.CrossRefPubMedGoogle Scholar
  6. 6.
    Singh S, Mariappan TT, Shankar R, Sarda N, Singh B. A critical review of the probable reasons for the poor/variable bioavailability of rifampicin from anti-tubercular fixed-dose combination (FDC) products, and the likely solutions to the problem. Int J Pharm. 2001;228:5–17.CrossRefPubMedGoogle Scholar
  7. 7.
    Dutt M, Khuller GK. Liposomes and PLG microparticles as sustained release antitubercular drug carriers-an in vitro-in vivo study. Int J Antimicrob Agents. 2001;18:245–52.CrossRefPubMedGoogle Scholar
  8. 8.
    O'Hara P, Hickey AJ. Respirable PLGA microspheres containing rifampicin for the treatment of tuberculosis: manufacture and characterization. Pharm Res. 2000;17:955–61.CrossRefPubMedGoogle Scholar
  9. 9.
    Rao BS, Murthy KVR. Studies on rifampicin release from ethylcellulose coated nonpareil beads. Int J Pharm. 2002;231:97–106.CrossRefPubMedGoogle Scholar
  10. 10.
    Suarez S, O'Hara P, Kazantseva M, Newcomer CE, Hopfer R, McMurray DN et al. Airways delivery of rifampicin microparticles for the treatment of tuberculosis. J Antimicrob Chemother. 2001;48:431–4.CrossRefPubMedGoogle Scholar
  11. 11.
    Vyas SP, Kannan ME, Jain S, Mishra V, Singh P. Design of liposomal aerosols for improved delivery of rifampicin to alveolar macrophages. Int J Pharm. 2004;269:37–49.CrossRefPubMedGoogle Scholar
  12. 12.
    Gaber NN, Darwis Y, Peh KK, Tan YTF. Characterization of polymeric micelles for pulmonary delivery of beclomethasone dipropionate. J Nanosci Nanotechnol. 2006;6:1–7.CrossRefGoogle Scholar
  13. 13.
    Torchilin VP. Polymer-coated long-circulating microparticulate pharmaceuticals. J Microencapsul. 1998;15:1–19.CrossRefPubMedGoogle Scholar
  14. 14.
    Zalipsky S. Long circulating, cationic liposomes containing amino-PEG-phosphatidylethanolamine. FEBS Lett. 1994;353:71–4.CrossRefPubMedGoogle Scholar
  15. 15.
    Allen C, Maysinger D, Eisenberg A. Nano-engineering block copolymer aggregates for drug delivery. Colloids Surf B: Biointerfaces. 1999;16:3–27.CrossRefGoogle Scholar
  16. 16.
    Jones MC, Leroux JC. Polymeric micelles—a new generation of colloidal drug carriers. Eur J Pharm Biopharm. 1999;48:101–11.CrossRefPubMedGoogle Scholar
  17. 17.
    Lukyanov AN, Gao Z, Torchilin VP. Micelles from polyethylene glycol/phosphatidylethanolamine conjugates for tumor drug delivery. J Control Release. 2003;91:97–102.CrossRefPubMedGoogle Scholar
  18. 18.
    Yamamoto H, Kuno Y, Sugimoto S, Takeuchi H, Kawashima Y. Surface-modified PLGA nanosphere with chitosan improved pulmonary delivery of calcitonin by mucoadhesion and opening of the intercellular tight junctions. J Control Release. 2005;102:373–81.CrossRefPubMedGoogle Scholar
  19. 19.
    Azarmi S, Roa WH, Lolbenberg R. Targeted delivery of nanoparticles for the treatment of lung diseases. Adv Drug Deliv Rev. 2008;60:863–75.CrossRefPubMedGoogle Scholar
  20. 20.
    Suarez S, Hickey AJ. Drug properties affecting aerosol behavior. Respir Care. 2000;45:652–66.PubMedGoogle Scholar
  21. 21.
    Joshi M, Misra A. Dry powder inhalation of liposomal Ketotifen fumarate: Formulation and characterization. Int J Pharma. 2001;223:15–27.CrossRefGoogle Scholar
  22. 22.
    Sung JC, Pulliam BL, Edwards DA. Nanoparticles for drug delivery to the lungs. Trends Biotechnol. 2007;25:563–70.CrossRefPubMedGoogle Scholar
  23. 23.
    Wiggins NA. The development of a mathematical approximation technique to determine the mass median aerodynamic diameter (MMAD) and geometric standard deviation (GSD) of drug particles in an inhalation aerosol spray. Drug Dev Ind Pharm. 1991;17:1971–86.CrossRefGoogle Scholar
  24. 24.
    Hu Y, Jiang X, Ding Y, Zhang L, Yang C, Zhang J et al. Preparation and drug release behaviors of nimodipine-loaded poly(caprolactone)-poly(ethylene oxide)-polylactide amphiphilic copolymer nanoparticles. Biomaterials. 2003;24:2395–404.CrossRefPubMedGoogle Scholar
  25. 25.
    Kreuter J. Nanoparticles—a historical perspective. Int J Pharm. 2007;331:1–10.CrossRefPubMedGoogle Scholar
  26. 26.
    Chou TH, Chu IM. Thermodynamic characteristics of DSPC/DSPE-PEG2000 mixed monolayers on the water subphase at different temperatures. Colloids Surf B: Biointerfaces. 2003;27:333–44.CrossRefGoogle Scholar
  27. 27.
    Zhang X, Jackson JK, Burt HM. Development of amphiphilic diblock copolymers as micellar carriers of taxol. Int J Pharm. 1996;132:195–206.CrossRefGoogle Scholar
  28. 28.
    Darwis Y, Kellaway IW. Nebulisation of rehydrated freeze-dried beclomethasone dipropionate liposomes. Int J Pharm. 2001;215:113–21.CrossRefPubMedGoogle Scholar
  29. 29.
    Agrawal S, Ashokraj Y, Bharatam PV, Pillai O, Panchagnula R. Solid-state characterization of rifampicin samples and its biopharmaceutic relevance. Eur J Pharm Sci. 2004;22:127–44.CrossRefPubMedGoogle Scholar
  30. 30.
    Rastogi R, Sultana Y, Aqil M, Ali A, Kumar S, Chuttani K et al. Alginate microspheres of isoniazid for oral sustained drug delivery. Int J Pharm. 2007;334:71–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Kim SY, Shin ILG, Lee YM, Cho CS, Sung YK. Methoxy poly (ethylene glycol) and Є-caprolactone amphiphilic block copolymeric micelle containing indomethacin. II. Micelle formulation and drug release behaviours. J Control Release. 1998;51:13–22.CrossRefPubMedGoogle Scholar
  32. 32.
    Lavasanifar A, Samuel J, Kwon GS. Poly(ethylene oxide)-block-poly(L-amino acid) micelles for drug delivery. Adv Drug Deliv Rev. 2002;54:169–90.CrossRefPubMedGoogle Scholar
  33. 33.
    Zhang Y, Zhuo RX. Synthesis and in vitro drug release behavior of amphiphilic triblock copolymer nanoparticles based on poly (ethylene glycol) and polycaprolactone. Biomaterials. 2005;26:6736–42.CrossRefPubMedGoogle Scholar
  34. 34.
    Vaghi A, Berg E, Liljedahl S, Svensson JO. In vitro comparison of nebulised budesonide (Pulmicort Respules®) and beclomethasone dipropionate (Clenil® per Aerosol). Pulm Pharmacol Ther. 2005;18:151–3.CrossRefPubMedGoogle Scholar
  35. 35.
    Hickey AJ, Kuchel K, Masinde LE. Method of aerosol particle size characterization. In: Hickey AJ, editor. Pharmaceutical inhalation aerosol technology. New York: Marcel Dekker; 1992. p. 218–53.Google Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2010

Authors and Affiliations

  • Juma Masoud Abdulla Abdulla
    • 1
  • Yvonne Tze-Fung Tan
    • 2
  • Yusrida Darwis
    • 2
  1. 1.Institute of HealthSebha UniversitySebhaLibya
  2. 2.School of Pharmaceutical SciencesUniversiti Sains MalaysiaPenangMalaysia

Personalised recommendations