Skip to main content
Log in

In vitro Permeability Enhancement in Intestinal Epithelial Cells (Caco-2) Monolayer of Water Soluble Quaternary Ammonium Chitosan Derivatives

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the effects of a type of hydrophobic moiety, extent of N-substitution (ES), and degree of quaternization (DQ) of chitosan (CS) on the transepithelial electrical resistance and permeability of Caco-2 cells monolayer, using fluorescein isothiocyanate dextran 4,400 (FD-4) as the model compound for paracellular tight junction transport. CS was substituted with hydrophobic moiety, an aliphatic aldehyde (n-octyl) or aromatic aldehyde (benzyl), for the improved hydrophobic interaction with cell membrane, and they were quaternized with Quat-188 to render CS soluble. The factors affecting the epithelial permeability have been evaluated in the intestinal cell monolayers, Caco-2 cells. Cytotoxicity was evaluated by using the trypan blue and MTT viability assay. The results revealed that at pH 7.4 CSQ appeared to increase cell permeability in dose-dependent manner, and this effect was relatively reversible at the lower doses of 0.05–1.25 mM. The higher DQ and ES caused the higher permeability of FD-4. Cytotoxicity of CSQ was concentration, %DQ, and %ES dependent. Substitution with hydrophobic moiety caused decreasing in permeability of FD-4 and cytotoxicity by benzyl group had more effect than octyl group. These studies demonstrated that these novel modified chitosan derivatives had potential for using as absorption enhancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BzCSQ:

N-Benzyl chitosan Quat-188

CS:

Chitosan

CSA:

Chitosan acetate

CSQ:

Chitosan Quat-188

DQ:

Degree of Quat-188

ES:

The extent of N-substitution

FD-4:

Fluorescein isothiocyanate dextran 4,400

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide

OctCSQ:

N-Octyl chitosan Quat-188

TEER:

The transepithelial electrical resistance

TM-Bz-CS:

Methylated N-(4-N,N-dimethylaminobenzyl) chitosan

References

  1. Borchard G, Lueszen HL, Boer DAG, Verhoef JC, Lehr CM, Junginger HE. The potential of mucoadhesive polymers in enhancing intestinal peptide drug absorption III. Effects of chitosan-glutamate and carbomer on epithelial tight junctions in vitro. J Control Rel. 1996;39:131–8.

    Article  CAS  Google Scholar 

  2. Portero A, Remunan-Lopez C, Nielsen HM. The potential of chitosan in enhancing peptide and protein absorption across the TR146 cell culture model-an in vitro model of the buccal epithelium. Pharm Res. 2002;19:169–74.

    Article  CAS  PubMed  Google Scholar 

  3. Colo DG, Burgalassi S, Zambito Y, Monti D, Chetoni P. Effects of different N-trimethylchitosans on in vitro/in vivo ofloxacin transcorneal permeation. J Pharm Sci. 2004;93:2851–62.

    Article  PubMed  Google Scholar 

  4. Sandri G, Rossi S, Ferrari F, Bonferoni MC, Muzzarelli C, Caramella C. Assessment of chitosan derivatives as buccal and vaginal penetration enhancers. Eur J Pharm Sci. 2004;21:351–9.

    Article  CAS  PubMed  Google Scholar 

  5. Sieval AB, Thanou M, Kotze AF, Verhoef JC, Brussee J, Junginger HE. Preparation and NMR characterization of highly substituted N-trimethyl chitosan chloride. Carbohydr Polym. 1998;36:157–65.

    Article  CAS  Google Scholar 

  6. Hamman JH, Kotze AF. Effect of the type of base and number of reaction steps on the degree of quaternization and molecular weight of N-trimethyl chitosan chloride. Drug Dev Ind Pharm. 2001;27:373–80.

    Article  CAS  PubMed  Google Scholar 

  7. Curti E, Britto DD, Davis SS, Illum I. Methylation of chitosan with iodomethane: effect of reaction conditions on chemoselectivity and degree of substitution. Macromol Biosci. 2003;3:571–6.

    Article  CAS  Google Scholar 

  8. Polnok A, Borchard G, Verhoef JC, Sarisuta N, Junginger HE. Influence of methylation process on the degree of quaternization of N-trimethyl chitosan chloride. Eur J Pharm Biopharm. 2004;57:77–83.

    Article  CAS  PubMed  Google Scholar 

  9. Loubaki E, Ourevitch M, Sicsic S. Chemical modification of chitosan by glycidyl trimethylammonium chloride: characterization of modified chitosan by 13C- and 1H-NMR spectroscopy. Eur Polym J. 1991;27:311–7.

    Article  CAS  Google Scholar 

  10. Daly WH, Manuszak-Guerrini MA. Use of polysaccharide derivatives as anti-infectives substances. Polym Mater Sci Eng. 1998;79:220–1.

    CAS  Google Scholar 

  11. Heinze T, Haack V, Rensing S. Starch derivatives of high degree of functionalization: preparation of cationic 2-hydroxypropyltrimethyl ammonium chloride starches. Starch/Staerke. 2004;56:288–96.

    Article  CAS  Google Scholar 

  12. Hashem M, Hauser P, Smith B. Reaction efficiency for cellulose cationization using 3-chloro-2-hydroxypropyl trimethyl ammonium chloride. Textile Res J. 2003;73:1017–23.

    Article  CAS  Google Scholar 

  13. Sajomsang W, Tantayanon S, Tangpasuthadol V, Daly WH. Quaternization of N-aryl chitosan derivatives: synthesis, characterization, and antibacterial activity. Carbohydrate Research. 2009;344:2502–11.

    Article  CAS  PubMed  Google Scholar 

  14. Lavertu M, Xia Z, Serreqi AN, Berrada M, Rodrigues A, Wang D et al. Validated 1H-NMR method for the determination of the degree of deacetylation of chitosan. J Pharm Biomed Analysis. 2003;32:1149–58.

    Article  CAS  Google Scholar 

  15. Kotze AF, Lueben HL, Leeuw BJD, Boer BGD, Verhoef JC, Junginger HE. Comparison of the effect of different chitosan salts and N-trimethyl chitosan chloride on the permeability of intestinal epithelial cells (Caco-2). J Control Rel. 1998;51:35–46.

    Article  Google Scholar 

  16. Mossman TJ. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.

    Article  Google Scholar 

  17. Chae Y, Jang MK, Nah JW. Influence of molecular weight on oral absorption of water soluble chitosans. J Control Rel. 2005;102:383–94.

    Article  CAS  Google Scholar 

  18. Crini G, Torri G, Guerrini M, Morcellet M, Weltrowski M, Martel B. NMR characterization of N-benzyl sulfonated derivatives of chitosan. Carbohydr Polym. 1997;33:145–51.

    Article  CAS  Google Scholar 

  19. Rabea EI, Badawy TME, Stevens CV, Smagghe G, Steurbaut W. Chitosan as antimicrobial agent: applications and mode of action. Biomacromol (Review). 2003;4:1457–65.

    Article  CAS  Google Scholar 

  20. Daly WH, Manuszak-Guerrini MA. Biocidal chitosan derivatives for cosmetics and pharmaceuticals. US Patent 6,306,835, 23 Oct 2001.

    Google Scholar 

  21. Num CW, Kim YH, Ko SW. Modification of polyacrylonitrile (PAN) fiber by blending with N-(2-hydroxy)propyl-3-trimethylammonium chitosan chloride. J Appli Polym Sci. 1999;74:2258–65.

    Article  Google Scholar 

  22. Kim YH, Nam WC, Choi JW, Jang J. Durable antimicrobial treatment of cotton fabrics using n-(2-hydroxy)propyl-3-trimethylammonium chitosan chloride and polycarboxylic acids. J Appli Polym Sci. 2003;88:1567–72.

    Article  CAS  Google Scholar 

  23. Lim SH, Hudson SM. Synthesis and antimicrobial activity of a water-soluble chitosan derivative with a fiber-reactive group. Carbohydr Res. 2004;339:313–9.

    Article  CAS  PubMed  Google Scholar 

  24. McEwan G, Jepson M, Hirst B, Simmons N. Polycation induced enhancement of epithelial paracellular permeability is independent of tight junctional characteristics. Biochim Biophys Acta. 1993;1148:51–60.

    Article  CAS  PubMed  Google Scholar 

  25. Thanou MM, Kotze AF, Scharringhausen T, Lueßen HL, Boer DAG, Verhoef JC et al. Effect of degree of quaternization of N-trimethyl chitosan chloride for enhanced transport of hydrophilic compounds across intestinal Caco-2 cell monolayers. J Control Rel. 2000;64:15–25.

    Article  CAS  Google Scholar 

  26. Kowapradit J, Opanasopit P, Ngawhiranpat T, Apirakaramwong A, Rojanarata T, Ruktanonchai U et al. Methylated N-(4-N, N-dimethylaminobenzyl) chitosan, a novel chitosan derivative, enhances paracellular permeability across intestinal epithelial cells (Caco-2). AAPS Pharm Sci Technol. 2008;9:1143–52.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Commission of Higher Education (Thailand), The Thailand Research Funds through the Golden Jubilee Ph.D. Program (Grant No. PHD/0114/2550), The National Research Council of Thailand, and Silpakorn University Research and Development Institute for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praneet Opanasopit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kowapradit, J., Opanasopit, P., Ngawhirunpat, T. et al. In vitro Permeability Enhancement in Intestinal Epithelial Cells (Caco-2) Monolayer of Water Soluble Quaternary Ammonium Chitosan Derivatives. AAPS PharmSciTech 11, 497–508 (2010). https://doi.org/10.1208/s12249-010-9399-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-010-9399-7

Key words

Navigation