AAPS PharmSciTech

, Volume 10, Issue 4, pp 1158–1171 | Cite as

Organic–Inorganic Composites for Bone Drug Delivery

  • Chidambaram Soundrapandian
  • Biswanath Sa
  • Someswar Datta


This review paper attempts to provide an overview in the fabrication and application of organic–inorganic based composites in the field of local drug delivery for bone. The concept of local drug delivery exists for a few decades. However, local drug delivery in bone and specially application of composites for delivery of drugs to bone is an area for potential research interest in the recent time. The advantages attained by an organic–inorganic composite when compared to its individual components include their ability to release drug, adopting to the natural environment and supporting local area until complete bone regeneration, which make them carriers of interest for local drug delivery for bone.

Key words

biomaterials carrier systems composite local delivery organic–inorganic 



Bioactive glass


Bone morphogenetic protein


Calcium sulfate


Dimethyl carbonate






Poly (d,l-lactide)








Recombinant human


Simulated body fluid


Tricalcium phosphate


Transforming growth factor


  1. 1.
    Gardner MJ, Demetrakopoulos D, Shindle MK, Griffith MH, Lane JM. Osteoporosis and skeletal fractures. HSS J. 2006;2(1):62–9.CrossRefPubMedGoogle Scholar
  2. 2.
    Gururaj G. Injuries in India: national perspective burden of disease in India. In: NCoMaH, editor. Government of India; 2005. pp. 325–47.Google Scholar
  3. 3.
    Kavarthapu V. (2009) Available from: Accessed 2009 July 25.
  4. 4.
    Benson MK, Hughes SP. Infection following total hip replacement in a general hospital without special orthopaedic facilities. Acta Orthop Scand. 1975;46:968–78.PubMedCrossRefGoogle Scholar
  5. 5.
    Chung R, Bivins BA. Antimicrobial prophylaxis in surgery. A synopsis. Infect Dis Newsl. 1991;10:1–4.CrossRefGoogle Scholar
  6. 6.
    Grogan TJ, Dorey F, Rollins J, Amstutz HC. Ten-year experience at the University of California at Los Angeles Medical Center. J Bone Joint Surg Am. 1986;68:226–34.Google Scholar
  7. 7.
    Salvati EA, Robinson RP, Zeno SM, Koslin BL, Brause BD, Wilson PDJ. Infection rates after 3175 total hip and total knee replacements performed with and without a horizontal unidirectional filtered air-flow system. J Bone Jt Surg Am. 1982;64:525–35.Google Scholar
  8. 8.
    Ginebra MP, Traykova T, Planell JA. Calcium phosphate cements: competitive drug carriers for the musculoskeletal system? Biomaterials. 2006;27(10):2171–7.CrossRefPubMedGoogle Scholar
  9. 9.
    Buchholz HW, Elson RA, Engelbrecht E, Lodenkamper H, Rottger J, Siegel A. Management of deep infection of total hip replacement. J Bone Jt Surg Br. 1981;63:342–53.Google Scholar
  10. 10.
    Passuti N, Gouin F. Antibiotic-loaded bone cement in orthopedic surgery. Jt Bone Spine. 2003;70(3):169–74.CrossRefGoogle Scholar
  11. 11.
    Zalavras CG, Patzakis MJ, Holtom P. Local antibiotic therapy in the treatment of open fractures and osteomyelitis. Clin Orthop Relat Res. 2004;(427):86-93.Google Scholar
  12. 12.
    Colilla M, Manzano M, Vallet-Regi M. Recent advances in ceramic implants as drug delivery systems for biomedical applications. Int J Nanomed. 2008;3(4):403–14.Google Scholar
  13. 13.
    Lee JY, Nam SH, Im SY, Park YJ, Lee YM, Seol YJ, et al. Enhanced bone formation by controlled growth factor delivery from chitosan-based biomaterials. J Control Release. 2002;78(1–3):187–97.CrossRefPubMedGoogle Scholar
  14. 14.
    Lee JY, Seol YJ, Kim KH, Lee YM, Park YJ, Rhyu IC, et al. Transforming growth factor (TGF)-beta1 releasing tricalcium phosphate/chitosan microgranules as bone substitutes. Pharm Res. 2004;21(10):1790–6.CrossRefPubMedGoogle Scholar
  15. 15.
    Kim HW, Knowles JC, Kim HE. Hydroxyapatite porous scaffold engineered with biological polymer hybrid coating for antibiotic Vancomycin release. J Mater Sci Mater Med. 2005;16(3):189–95.CrossRefPubMedGoogle Scholar
  16. 16.
    Eppley BL, Reilly M. Degradation characteristics of PLLA-PGA bone fixation devices. J Craniofac Surg. 1997;8(2):116–20.PubMedGoogle Scholar
  17. 17.
    Bostman O, Pihlajamaki H. Clinical biocompatibility of biodegradable orthopaedic implants for internal fixation: a review. Biomaterials. 2000;21(24):2615–21.CrossRefPubMedGoogle Scholar
  18. 18.
    Furukawa T, Matsusue Y, Yasunaga T, Nakagawa Y, Okada Y, Shikinami Y, et al. Histomorphometric study on high-strength hydroxyapatite/poly(L-lactide) composite rods for internal fixation of bone fractures. J Biomed Mater Res. 2000;50(3):410–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27(18):3413–31.CrossRefPubMedGoogle Scholar
  20. 20.
    Miyai T, Ito A, Tamazawa G, Matsuno T, Sogo Y, Nakamura C, et al. Antibiotic-loaded poly-ε-caprolactone and porous β-tricalcium phosphate composite for treating osteomyelitis. Biomaterials. 2008;29(3):350–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Tuzuner T, Uygur I, Sencan I, Haklar U, Oktas B, Ozdemir D. Elution characteristics and mechanical properties of calcium sulfate-loaded bone cement containing teicoplanin. J Orthop Sci. 2007;12(2):170–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Rai B, Teoh SH, Hutmacher DW, Cao T, Ho KH. Novel PCL-based honeycomb scaffolds as drug delivery systems for rhBMP-2. Biomaterials. 2005;26(17):3739–48.CrossRefPubMedGoogle Scholar
  23. 23.
    Zhang LF, Sun R, Xu L, Du J, Xiong ZC, Chen HC, et al. Hydrophilic poly (ethylene glycol) coating on PDLLA/BCP bone scaffold for drug delivery and cell culture. Mater Sci Eng, C. 2008;28(1):141–9.CrossRefGoogle Scholar
  24. 24.
    Schnieders J, Gbureck U, Thull R, Kissel T. Controlled release of gentamicin from calcium phosphate-poly(lactic acid-co-glycolic acid) composite bone cement. Biomaterials. 2006;27(23):4239–49.CrossRefPubMedGoogle Scholar
  25. 25.
    Ruhe PQ, Boerman OC, Russel FG, Spauwen PH, Mikos AG, Jansen JA. Controlled release of rhBMP-2 loaded poly(dl-lactic-co-glycolic acid)/calcium phosphate cement composites in vivo. J Control Release. 2005;106(1–2):162–71.CrossRefPubMedGoogle Scholar
  26. 26.
    Makinen TJ, Veiranto M, Lankinen P, Moritz N, Jalava J, Tormala P, et al. In vitro and in vivo release of ciprofloxacin from osteoconductive bone defect filler. J Antimicrob Chemother. 2005;56(6):1063–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Li H, Chang J. Preparation, characterization and in vitro release of gentamicin from PHBV/wollastonite composite microspheres. J Control Release. 2005;107(3):463–73.CrossRefPubMedGoogle Scholar
  28. 28.
    Kim HW, Lee EJ, Jun IK, Kim HE, Knowles JC. Degradation and drug release of phosphate glass/polycaprolactone biological composites for hard-tissue regeneration. J Biomed Mater Res B Appl Biomater. 2005;75(1):34–41.PubMedGoogle Scholar
  29. 29.
    Kim HW, Knowles JC, Kim HE. Hydroxyapatite/poly(epsilon-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery. Biomaterials. 2004;25(7–8):1279–87.CrossRefPubMedGoogle Scholar
  30. 30.
    Zhang Y, Zhang M. Calcium phosphate/chitosan composite scaffolds for controlled in vitro antibiotic drug release. J Biomed Mater Res. 2002;62(3):378–86.CrossRefPubMedGoogle Scholar
  31. 31.
    Sivakumar M, Panduranga Rao K. Preparation, characterization and in vitro release of gentamicin from coralline hydroxyapatite-gelatin composite microspheres. Biomaterials. 2002;23(15):3175–81.CrossRefPubMedGoogle Scholar
  32. 32.
    Arcos D, Ragel CV, Vallet-Regi M. Bioactivity in glass/PMMA composites used as drug delivery system. Biomaterials. 2001;22(7):701–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Ragel CV, Vallet-Regi M. In vitro bioactivity and gentamicin release from glass-polymer-antibiotic composites. J Biomed Mater Res. 2000;51(3):424–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Amaro Martins VC, Goissis G. Nonstoichiometric hydroxyapatite–anionic collagen composite as support for the double sustained release of gentamicin and norfloxacin/ciprofloxacin. Artif Organs. 2000;24(3):224–30.CrossRefPubMedGoogle Scholar
  35. 35.
    Catauro M, Raucci MG, De Marco D, Ambrosio L. Release kinetics of ampicillin, characterization and bioactivity of TiO2/PCL hybrid materials synthesized by sol–gel processing. J Biomed Mater Res. 2006;77A(2):340–50.CrossRefGoogle Scholar
  36. 36.
    Catauro M, Raucci M, Ausanio G. Sol–gel processing of drug delivery zirconia/polycaprolactone hybrid materials. J Mater Sci Mater Med. 2008;19(2):531–40.CrossRefPubMedGoogle Scholar
  37. 37.
    Abe T, Sakane M, Ikoma T, Kobayashi M, Nakamura S, Ochiai N. Intraosseous delivery of paclitaxel-loaded hydroxyapatitealginate composite beads delaying paralysis caused by metastatic spine cancer in rats. J Neurosurg. 2008;9(5):502–10.Google Scholar
  38. 38.
    Xiao J, Zhu Y, Liu Y, Zeng Y, Xu F. An asymmetric coating composed of gelatin and hydroxyapatite for the delivery of water insoluble drug. J Mater Sci Mater Med. 2009;20(4):889–96.CrossRefPubMedGoogle Scholar
  39. 39.
    Lin M, Wang H, Meng S, Zhong W, Li Z, Cai R, et al. Structure and release behavior of PMMA/silica composite drug delivery system. J Pharm Sci. 2007;96(6):1518–26.CrossRefPubMedGoogle Scholar
  40. 40.
    Otsuka M, Otsuka K. Bone regeneration by using drug delivery system technology and apatite intelligent materials. J Hard Tissue Biol. 2005;14(2):261–2.CrossRefGoogle Scholar
  41. 41.
  42. 42.
    McClung MR, Geusens P, Miller PD, Zippel H, Bensen WG, Roux C, et al. Effect of risedronate on the risk of hip fracture in elderly women. Hip intervention program study group. N Engl J Med. 2001;344(5):333–40.CrossRefPubMedGoogle Scholar
  43. 43.
    Harbarth S, Pestotnik SL, Lloyd JF, Burke JP, Samore MH. The epidemiology of nephrotoxicity associated with conventional amphotericin B therapy. Am J Med. 2001;111:528–34.CrossRefPubMedGoogle Scholar
  44. 44.
    Hsieh CY, Hsieh HJ, Liu HC, Wang DM, Hou LT. Fabrication and release behavior of a novel freeze-gelled chitosan/gamma-PGA scaffold as a carrier for rhBMP-2. Dent Mater. 2006;22(7):622–9.CrossRefPubMedGoogle Scholar
  45. 45.
    Fux CA, Costerton JW, Stewart PS, Stoodley P. Survival strategies of infectious biofilms. Trends Microbiol. 2005;13(1):34–40.CrossRefPubMedGoogle Scholar
  46. 46.
    Mathew G, Hanson BP. Global burden of trauma: need for effective fracture therapies. Indian J Orthop. 2009;43:111–6.CrossRefPubMedGoogle Scholar
  47. 47.
    Schmidmaier G, Schwabe P, Strobel C, Wildemann B. Carrier systems and application of growth factors in orthopaedics. Injury. 2008;39(Suppl 2):S37–43.CrossRefPubMedGoogle Scholar
  48. 48.
    Woo BH, Fink BF, Page R, Schrier JA, Jo YW, Jiang G, et al. Enhancement of bone growth by sustained delivery of recombinant human bone morphogenetic protein-2 in a polymeric matrix. Pharm Res. 2001;18(12):1747–53.CrossRefPubMedGoogle Scholar
  49. 49.
    Koort J, Mäkinen T, Suokas E, Veiranto M, Jalava J, Knuuti J, et al. Efficacy of ciprofloxacin-releasing bioabsorbable osteoconductive bone defect filler for treatment of experimental osteomyelitis due to Staphylococcus aureus. Antimicrob Agents Chemother. 2005;49(4):1502–8.CrossRefPubMedGoogle Scholar
  50. 50.
    Padilla S, del Real RP, Vallet-Regi M. In vitro release of gentamicin from OHAp/PEMA/PMMA samples. J Control Release. 2002;83(3):343–52.CrossRefPubMedGoogle Scholar
  51. 51.
    Ramila A, del Real RP, Marcos R, Horcajada P, Vallet-Regi M. Drug release and in vitro assays of bioactive polymer/glass mixtures. J Sol Gel Sci Tech. 2003;26:1195–8.CrossRefGoogle Scholar
  52. 52.
    Xu Q, Czernuszka JT. Controlled release of amoxicillin from hydroxyapatite-coated poly(lactic-co-glycolic acid) microspheres. J Control Release. 2008;127(2):146–53.PubMedGoogle Scholar
  53. 53.
    Niu X, Feng Q, Wang M, Guo X, Zheng Q. Porous nano-HA/collagen/PLLA scaffold containing chitosan microspheres for controlled delivery of synthetic peptide derived from BMP-2. J Control Release. 2009;134(2):111–7.CrossRefPubMedGoogle Scholar
  54. 54.
    Wang Y, Wang X, Wei K, Zhao N, Zhang S, Chen J. Fabrication, characterization and long-term in vitro release of hydrophilic drug using PHBV/HA composite microspheres. Mater Lett. 2007;61(4–5):1071–6.CrossRefGoogle Scholar
  55. 55.
    Ho ML, Fu YC, Wang GJ, Chen HT, Chang JK, Tsai TH, et al. Controlled release carrier of BSA made by W/O/W emulsion method containing PLGA and hydroxyapatite. J Control Release. 2008;128(2):142–8.CrossRefPubMedGoogle Scholar
  56. 56.
    Xue JM, Shi M. PLGA/mesoporous silica hybrid structure for controlled drug release. J Control Release. 2004;98(2):209–17.CrossRefPubMedGoogle Scholar
  57. 57.
    Castro C, Sanchez E, Delgado A, Soriano I, Nunez P, Baro M, et al. Ciprofloxacin implants for bone infection. In vitro–in vivo characterization. J Control Release. 2003;93(3):341–54.CrossRefPubMedGoogle Scholar
  58. 58.
    Yaylaoglu MB, Korkusuz P, Ors U, Korkusuz F, Hasirci V. Development of a calcium phosphate–gelatin composite as a bone substitute and its use in drug release. Biomaterials. 1999;20(8):711–9.CrossRefPubMedGoogle Scholar
  59. 59.
    Kelpke SS, Zinn KR, Rue LW, Thompson JA. Site-specific delivery of acidic fibroblast growth factor stimulates angiogenic and osteogenic responses in vivo. J Biomed Mater Res A. 2004;71(2):316–25.CrossRefPubMedGoogle Scholar
  60. 60.
    Vallet-Regi M, Granado S, Arcos D, Gordo M, Cabanas MV, Ragel CV, et al. Preparation, characterization, and in vitro release of ibuprofen from AI2O3/PLA/PMMA composites. J Biomed Mater Res. 1998;39(3):423–8.CrossRefPubMedGoogle Scholar
  61. 61.
    Rentería-Zamarrón D, Cortés-Hernández DA, Bretado-Aragón L, Ortega-Lara W. Mechanical properties and apatite-forming ability of PMMA bone cements. Mater Des. 2009;30(8):3318–24.Google Scholar
  62. 62.
    Serbetci K, Korkusuz F, Hasirci N. Mechanical and thermal properties of hydroxyapatite-impregnated bone cement. Turk J Med Sci. 2000;30(6):543–9.Google Scholar
  63. 63.
    Martins VC, Goissis G, Ribeiro AC, Marcantonio E Jr, Bet MR. The controlled release of antibiotic by hydroxyapatite: anionic collagen composites. Artif Organs. 1998;22(3):215–21.CrossRefPubMedGoogle Scholar
  64. 64.
    Zhang Y, Zhang M. Cell growth and function on calcium phosphate reinforced chitosan scaffolds. J Mater Sci Mater Med. 2004;15(3):255–60.CrossRefPubMedGoogle Scholar
  65. 65.
    Gravel M, Gross T, Vago R, Tabrizian M. Responses of mesenchymal stem cell to chitosan–coralline composites microstructured using coralline as gas forming agent. Biomaterials. 2006;27(9):1899–906.CrossRefPubMedGoogle Scholar
  66. 66.
    Ho MH, Kuo PY, Hsieh HJ, Hsien TY, Hou LT, Lai JY, et al. Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials. 2004;25(1):129–38.CrossRefPubMedGoogle Scholar
  67. 67.
    Maquet V, Boccaccini AR, Pravata L, Notingher I, Jerome R. Porous poly(alpha-hydroxyacid)/Bioglass composite scaffolds for bone tissue engineering. I: preparation and in vitro characterisation. Biomaterials. 2004;25(18):4185–94.CrossRefPubMedGoogle Scholar
  68. 68.
    Lee JS, Park JK. Processing of porous ceramic spheres by pseudo-double-emulsion method. Ceram Int. 2003;29(3):271–8.CrossRefGoogle Scholar
  69. 69.
    Tampieri A, Celotti G, Landi E, Montevecchi M, Roveri N, Bigi A, et al. Porous phosphate–gelatine composite as bone graft with drug delivery function. J Mater Sci Mater Med. 2003;14(7):623–7.CrossRefPubMedGoogle Scholar
  70. 70.
    Jones AC, Arns CH, Sheppard AP, Hutmacher DW, Milthorpe BK, Knackstedt MA. Assessment of bone ingrowth into porous biomaterials using MICRO-CT. Biomaterials. 2007;28(15):2491–504.CrossRefPubMedGoogle Scholar
  71. 71.
    LeGeros RZ. Calcium phosphate-based osteoinductive materials. Chem Rev. 2008;108(11):4742–53.CrossRefPubMedGoogle Scholar
  72. 72.
    Schnettler R, Pfefferle HJ, Kilian O, Heiss C, Kreuter J, Lommel D, et al. Glycerol-l-lactide coating polymer leads to delay in bone ingrowth in hydroxyapatite implants. J Control Release. 2005;106(1–2):154–61.CrossRefPubMedGoogle Scholar
  73. 73.
    Biomechanics in Dentistry. Available from: Accessed 25 July 2009
  74. 74.
    Ratier A, Gibson I, Best S, Freche M, Lacout J, Rodriguez F. Setting characteristics and mechanical behavior of a calcium phosphate bone cement containing tetracycline. Biomaterials. 2001;22:897–901.CrossRefPubMedGoogle Scholar
  75. 75.
    Rai B, Teoh SH, Ho KH. An in vitro evaluation of PCL-TCP composites as delivery systems for platelet-rich plasma. J Control Release. 2005;107(2):330–42.CrossRefPubMedGoogle Scholar
  76. 76.
    Knowles JC. Phosphate based glasses for biomedical applications. J Mater Chem. 2003;13:2395–401.CrossRefGoogle Scholar
  77. 77.
    Franks K, Abrahams I, Knowles JC. Development of soluble glasses for biomedical use. Part I: in vitro solubility measurement. J Mater Sci Mater Med. 2000;11(10):609–14.CrossRefPubMedGoogle Scholar
  78. 78.
    Niemelä T. Effect of [beta]-tricalcium phosphate addition on the in vitro degradation of self-reinforced poly-l, d-lactide. Polym Degrad Stab. 2005;89(3):492–500.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2009

Authors and Affiliations

  • Chidambaram Soundrapandian
    • 1
  • Biswanath Sa
    • 1
  • Someswar Datta
    • 2
  1. 1.Department of Pharmaceutical TechnologyJadavpur UniversityKolkataIndia
  2. 2.Bioceramic and Coating DivisionCentral Glass & Ceramic Research InstituteKolkataIndia

Personalised recommendations