AAPS PharmSciTech

, Volume 10, Issue 1, pp 172–182 | Cite as

Formulation Development and Bioavailability Evaluation of a Self-Nanoemulsified Drug Delivery System of Oleanolic Acid

  • Jia Xi
  • Qi Chang
  • Chak K. Chan
  • Zhao Yu Meng
  • Geng Nan Wang
  • Jia Bei Sun
  • Yi Tao Wang
  • Henry H. Y. Tong
  • Ying Zheng
Research Article


This study aims to formulate and evaluate bioavailability of a self-nanoemulsified drug delivery system (SNEDDS) of a poorly water-soluble herbal active component oleanolic acid (OA) for oral delivery. Solubility of OA under different systems was determined for excipient selection purpose. Four formulations, where OA was fixed at the concentration of 20 mg/g, were prepared utilizing Sefsol 218 as oil phase, Cremophor EL and Labrasol as primary surfactants, and Transcutol P as cosurfactant. Pseudo-ternary phase diagrams were constructed to identify self-emulsification regions for the rational design of SNEDDS formulations. Sefsol 218 was found to provide the highest solubility among all medium-chained oils screened. Efficient self-emulsification was observed for the systems composing of Cremophor EL and Labrasol. The surfactant to cosurfactant ratio greatly affected the droplet size of the nanoemulsion. Based on the outcomes in dissolution profiles, stability data, and particle size profiles, three optimized formulations were selected: Sefsol 218/Cremophor EL/Labrasol (50:25:25, w/w), Sefsol 218/Cremophor EL/Labrasol/Transcutol P (50:20:20:10, w/w), and Sefsol 218/Cremophor EL/Labrasol/Transcutol P (50:17.5:17.5:15, w/w). Based on the conventional dissolution method, a remarkable increase in dissolution was observed for the SNEDDS when compared with the commercial tablet. The oral absorption of OA from SNEDDS showed a 2.4-fold increase in relative bioavailability compared with that of the tablet (p < 0.05), and an increased mean retention time of OA in rat plasma was also observed compared with that of the tablet (p < 0.01). These results suggest the potential use of SNEDDS to improve dissolution and oral bioavailability for poorly water-soluble triterpenoids such as OA.

Key words

bioavailability dissolution oleanolic acid self-nanoemulsified drug delivery system (SNEDDS) triterpenoid 



Financial support from the Research Council of the University of Macau (Research Grant RG 072/05-06S/07R for YZ) and the Macao Science and Technology Development Fund (FDCT Fund Project No: 005/2007/A1 for HHYT & 008/2007/A1 for YZ) is gratefully acknowledged. Valuable comments from Mr. Zhao Yi are highly appreciated.


  1. 1.
    L. T. Tian, L. Ma, and N. S. Du. Survey of pharmacology of oleanolic acid. Chin. J. Chin. Mater. Med. 27:884–886 (2002).Google Scholar
  2. 2.
    J. Liu. Pharmacology of oleanolic acid and ursolic acid. J. Ethnopharmacol. 49:57–68 (1995).PubMedCrossRefGoogle Scholar
  3. 3.
    B. Claude, P. h. Morin, M. Lafosse, and P. Andre. Evaluation of apparent formation constants of pentacyclic triterpene acids complexes with derivatized β- and χ-cyclodextrins by reversed phase liquid chromatography. J. Chromatogr. A. 1049:37–42 (2004).PubMedGoogle Scholar
  4. 4.
    H. H. Tong, H. B. Wu, Y. Zheng, J. Xi, H. L. Chow, and C. K. Chan. Physical characterization of oleanolic acid nonsolvate and solvates prepared by solvent recrystallization. Int. J. Pharm. 355:195–202 (2008).PubMedCrossRefGoogle Scholar
  5. 5.
    M. Song, T. Hang, Y. Wang, L. Jiang, X. Wu, Z. Zhang, J. Shen, and Y. Zhang. Determination of oleanolic acid in human plasma and study of its pharmacokinetics in Chinese healthy male volunteers by HPLC tandem mass spectrometry. J. Pharm. Biomed. Anal. 40:190–196 (2006).PubMedCrossRefGoogle Scholar
  6. 6.
    D. W. Jeong, Y. H. Kim, H. H. Kim, H. Y. Ji, S. D. Yoo, W. R. Choi, S. M. Lee, C. K. Han, and H. S. Lee. Dose-linear pharmacokinetics of oleanolic acid after intravenous and oral administration in rats. Biopharm. Drug Dispos. 28:51–57 (2007).PubMedCrossRefGoogle Scholar
  7. 7.
    Y. D. Yan, B. Feng, X. J. Huang, and Z. G. Zhou. Study on β-cyclodextrin inclusion compound of oleanolic acid. Chin. Tradit. Patent Med. 6:2–4 (1995).Google Scholar
  8. 8.
    D. X. Xiang, Y. F. Tao, F. Wang, and H. D. Li. Studies on formation and solubilizing mechanism of oleanolic acid solid dispersion. Chin. Tradit. Herb Drugs. 33:311–314 (2002).Google Scholar
  9. 9.
    M. Q. Guo, S. Q. Zhang, F. R. Song, D. W. Wang, Z. Q. Liu, and S. Y. Liu. Studies on the non-covalent complexes between oleanolic acid and cyclodextrins using electrospray ionization tandem mass spectrometry. J. Mass Spectrom. 38:723–731 (2003).PubMedCrossRefGoogle Scholar
  10. 10.
    V. T. Neu Yen Thi, and H. R. Zhao. Preparation of oleanolic acid solid dispersion systems and their dissolution in vitro. J. Chin. Pharm. Univ. 34:236–239 (2003).Google Scholar
  11. 11.
    A. A. Date, and M. S. Nagarsenker. Design and evaluation of self-nanoemulsified drug delivery systems (SNEDDS) for cefpodoxime proxetil. Int. J. Pharm. 329:166–172 (2007).PubMedCrossRefGoogle Scholar
  12. 12.
    P. P. Constantinides. Lipid microemulsions for improving drug dissolution and oral absorption: physical and biopharmaceutical aspects. Pharm. Res. 12:1561–1572 (1995).PubMedCrossRefGoogle Scholar
  13. 13.
    S. Shafiq, F. Shakeel, S. Talegaonkar, F. J. Ahmad, R. K. Khar, and M. Ali. Development and bioavailability assessment of ramipril nanoemulsion formulation. Eur. J. Pharm. Biopharm. 662:227–243 (2007).PubMedCrossRefGoogle Scholar
  14. 14.
    T. R. Kommuru, B. Gurley, M. A. Khan, and I. K. Reddy. Self-emulsified drug delivery systems (SEDDS) of coenzyme Q10: formulation development and bioavailability assessment. Int. J. Pharm. 212:233–246 (2001).PubMedCrossRefGoogle Scholar
  15. 15.
    K. Kawakami, Y. Yoshikawa, E. Moroto, K. Kanaoka, Y. Takaashi, K. Nishihara, and K. Masuda. Microemulsion formulation for enhanced absorption of poorly soluble drugs II. In vivo study. J. Control Release. 81:75–82 (2002).PubMedCrossRefGoogle Scholar
  16. 16.
    Y. Chen, J. Liu, X. Yang, X. Zhao, and H. Xu. Oleanolic acid nanosuspensions: preparation, in-vitro characterization and enhanced hepatoprotective effect. J. Pharm. Pharmacol. 57:259–264 (2005).PubMedCrossRefGoogle Scholar
  17. 17.
    P. Li, A. Ghosh, R. F. Wagner, S. Krill, Y. M. Joshi, and A. T. M. Serajuddin. Effect of combined use of nonionic surfactant on formation of oil-in-water microemulsions. Int. J. Pharm. 288:27–34 (2005).PubMedCrossRefGoogle Scholar
  18. 18.
    Z. G. Gao, H. G. Choi, H. J. Shin, K. M. Park, S. J. Lim, K. J. Hwang, and C. K. Kim. Physicochemical characterization and evaluation of a microemulsion system for oral delivery of cyclosphorin A. Int. J. Pharm. 161:75–86 (1998).CrossRefGoogle Scholar
  19. 19.
    S. Nazzal, I. I. Smalyukh, O. D. Lavrentovich, and M. A. Khan. Preparation and in vitro characterization of a eutectic based semisolid self-nanoemulsified drug delivery system (SNEDDS) of ubiquinone: mechanism and progress of emulsion formation. Int. J. Pharm. 235:247–265 (2002).PubMedCrossRefGoogle Scholar
  20. 20.
    S. A. Charman, W. N. Charman, M. C. Rogge, T. D. Wilson, F. J. Dutko, and C. W. Pouton. Self-emulsified drug delivery systems: formulation and biopharmaceutic evaluation of an investigational lipophilic compound. Pharm. Res. 9:87–93 (1992).PubMedCrossRefGoogle Scholar
  21. 21.
    P. Zhang, Y. Liu, N. P. Feng, and J. Xiu. Preparation and evaluation of self-microemulsifying drug delivery system of oridonin. Int. J. Pharm. 355:269–276 (2008).PubMedCrossRefGoogle Scholar
  22. 22.
    E. Atef, and A. A. Belmonte. Formulation and in vitro and in vivo characterization of a phenytoin self-emulsifying drug delivery system (SEDDS). Eur. J. Pharm. Sci. 35:257–263 (2008).PubMedCrossRefGoogle Scholar
  23. 23.
    Y. Y. Chiu, K. Higaki, B. L. Neudeck, J. L. Barnett, L. S. Welage, and G. L. Amidon. Human jejunal permeability of cyclosporin A: influence of surfactants on P-glycoprotein efflux in Caco-2 cells. Pharm. Res. 20:749–756 (2003).PubMedCrossRefGoogle Scholar
  24. 24.
    M. J. Lawrence, and G. D. Ress. Microemulsion-based media as novel drug delivery systems. Adv. Drug Deliv. Rev. 45:89–121 (2000).PubMedCrossRefGoogle Scholar
  25. 25.
    D. Q. M. Craig, S. A. Barker, D. Banning, and S. W. Booth. An investigation into the mechanisms of self-emulsification using particle size analysis and low frequency dielectric spectroscopy. Int. J. Pharm. 114:103–110 (1995).CrossRefGoogle Scholar
  26. 26.
    S. M. Khoo, A. J. Humberstone, C. J. H. Porter, G. A. Edwards, and W. N. Charman. Formulation design and bioavailability assessment of lipidic self-emulsifying formulations of halofantrine. Int. J. Pharm. 167:155–164 (1998).CrossRefGoogle Scholar
  27. 27.
    A. Priev, S. Zalipsky, R. Cohen, and Y. Barenholz. Determination of critical micelle concentration of lipopolymers and other amphiphiles: comparison of sound velocity and fluorescent measurements. Langmuir. 18:612–617 (2002).CrossRefGoogle Scholar
  28. 28.
    L. A. Smith, R. B. Hammond, K. J. Roberts, D. Machin, and G. McLeod. Determination of the crystal structure of anhydrous sodium dodecyl sulphate using a combination of synchrotron radiation powder diffraction and molecular modeling techniques. J. Mol. Struct. 554:173–182 (2000).CrossRefGoogle Scholar
  29. 29.
    P. K. Ghosh, and R. S. R. Murthy. Microemulsions: a potential drug delivery system. Curr. Drug Deliv. 3:167–180 (2006).PubMedCrossRefGoogle Scholar
  30. 30.
    N. J. Kale, and L. V. Allen. Studies on microemulsions using Brij 96 as surfactant and glycerin, ethylene glycol and propylene glycol as cosurfactants. Int. J. Pharm. 57:87–93 (1989).CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2009

Authors and Affiliations

  • Jia Xi
    • 1
  • Qi Chang
    • 2
  • Chak K. Chan
    • 3
  • Zhao Yu Meng
    • 2
  • Geng Nan Wang
    • 2
  • Jia Bei Sun
    • 1
  • Yi Tao Wang
    • 1
  • Henry H. Y. Tong
    • 4
  • Ying Zheng
    • 1
  1. 1.Institute of Chinese Medical SciencesUniversity of MacauMacau SARChina
  2. 2.Institute of Medicinal Plant DevelopmentChinese Academy of Medical Science & Peking Union Medical CollegeBeijingPeople’s Republic of China
  3. 3.Department of Chemical and Molecular EngineeringHong Kong University of Science and TechnologyHong KongChina
  4. 4.School of Health SciencesMacao Polytechnic InstituteMacao SARChina

Personalised recommendations