AAPS PharmSciTech

, Volume 10, Issue 1, pp 98–103 | Cite as

Evaluation of Polyethylene Oxide Compacts as Gastroretentive Delivery Systems

  • Ravichandran Mahalingam
  • Bhaskara Jasti
  • Raj Birudaraj
  • Dimitrios Stefanidis
  • Robert Killion
  • Tom Alfredson
  • Pratap Anne
  • Xiaoling Li
Research Article

Abstract

Compacts containing selected bioadhesive polymers, fillers, and binders were investigated for their potential as a bioadhesive gastroretentive delivery system to deliver water soluble and water insoluble compounds in the stomach. Compacts with 90:10, 75:25, and 60:40 of polyvinylpyrrolidone (PVP) and polyethylene oxide (PEO) were evaluated for swelling, dissolution, bioadhesion, and in vitro gastric retention. Compacts containing higher PEO showed higher swelling (111.13%) and bioadhesion (0.62 ± 0.03 N/cm2), and retained their integrity and adherence onto gastric mucosa for about 9 h under in vitro conditions. In vivo gastroretentive property of compacts were evaluated in Yorkshire cross swines. Compacts containing 58% PVP, 40% PEO and 2% of water soluble or water insoluble marker compounds showed gastroadhesive and retentive properties in vivo. It is concluded that PEO in combination with PVP yields a non disintegrating type bioadhesive dosage form which is suitable for gastroretentive applications.

Key words

bioadhesion compacts gastroretentive polyethylene oxide polyvinylpyrrolidone 

Notes

Acknowledgements

The authors acknowledge Long Ranch (Manteca) for providing isolated porcine stomach tissues and Pork Power Farm (Turlock) for providing animal research facility for conducting animal studies.

Dedication of the Manuscript: This manuscript is dedicated to the memory of Joseph Robinson, Ph.D.

References

  1. 1.
    J. Ali, S. Hasan, and M. Ali. Formulation and development of gastroretentive drug delivery system for ofloxacin. Methods Find. Exp. Clin. Pharmacol. 28(7):433–439 (2006).PubMedCrossRefGoogle Scholar
  2. 2.
    J. Ali et al. Development and evaluation of a gastroretentive drug delivery system for the low-absorption-window drug celecoxib. PDA J. Pharm. Sci. Technol. 61(2):88–96 (2007).PubMedGoogle Scholar
  3. 3.
    S. C. Basak, J. Rahman, and M. Ramalingam. Design and in vitro testing of a floatable gastroretentive tablet of metformin hydrochloride. Pharmazie. 62(2):145–148 (2007).PubMedGoogle Scholar
  4. 4.
    S. Christensen. The biological fate of riboflavin in mammals. A survey of literature and own investigations. Acta Pharmacol. Toxicol. (Copenh). 32:3–72 (1973).Google Scholar
  5. 5.
    B. S. Dave, A. F. Amin, and M. M. Patel. Gastroretentive drug delivery system of ranitidine hydrochloride: formulation and in vitro evaluation. AAPS PharmSciTech. 5(2):e34 (2004).PubMedCrossRefGoogle Scholar
  6. 6.
    D. Deleu, G. Ebinger, and Y. Michotte. Clinical and pharmacokinetic comparison of oral and duodenal delivery of levodopa/carbidopa in patients with Parkinson’s disease with a fluctuating response to levodopa. Eur. J. Clin. Pharmacol. 41(5):453–458 (1991).PubMedCrossRefGoogle Scholar
  7. 7.
    P. H. Marathe et al. Pharmacokinetics and bioavailability of a metformin/glyburide tablet administered alone and with food. J. Clin. Pharmacol. 40(12 Pt 2):1494–1502 (2000).PubMedGoogle Scholar
  8. 8.
    S. S. Davis. Formulation strategies for absorption windows. Drug Discov. Today. 10(4):249–257 (2005).PubMedCrossRefGoogle Scholar
  9. 9.
    A. J. Moes. Gastroretentive dosage forms. Crit. Rev. Ther. Drug Carrier. Syst. 10(2):143–195 (1993).PubMedGoogle Scholar
  10. 10.
    A. Streubel, J. Siepmann, and R. Bodmeier. Gastroretentive drug delivery systems. Expert. Opin. Drug Deliv. 3(2):217–233 (2006).PubMedCrossRefGoogle Scholar
  11. 11.
    A. Streubel, J. Siepmann, and R. Bodmeier. Drug delivery to the upper small intestine window using gastroretentive technologies. Curr. Opin. Pharmacol. 6(5):501–508 (2006).PubMedCrossRefGoogle Scholar
  12. 12.
    M. Jaimini, A. C. Rana, and Y. S. Tanwar. Formulation and evaluation of famotidine floating tablets. Curr. Drug Deliv. 4(1):51–55 (2007).PubMedCrossRefGoogle Scholar
  13. 13.
    N. Rouge et al. Comparative pharmacokinetic study of a floating multiple-unit capsule, a high-density multiple-unit capsule and an immediate-release tablet containing 25 mg atenolol. Pharm. Acta Helv. 73(2):81–87 (1998).PubMedCrossRefGoogle Scholar
  14. 14.
    A. Streubel, J. Siepmann, and R. Bodmeier. Floating microparticles based on low density foam powder. Int J Pharm. 241(2):279–92 (2002).PubMedCrossRefGoogle Scholar
  15. 15.
    A. Streubel, J. Siepmann, and R. Bodmeier. Multiple unit gastroretentive drug delivery systems: a new preparation method for low density microparticles. J. Microencapsul. 20(3):329–347 (2003).PubMedCrossRefGoogle Scholar
  16. 16.
    R. Talukder, and R. Fassihi. Gastroretentive delivery systems: hollow beads. Drug Dev. Ind. Pharm. 30(4):405–412 (2004).PubMedCrossRefGoogle Scholar
  17. 17.
    L. Whitehead et al. Floating dosage forms: an in vivo study demonstrating prolonged gastric retention. J. Control Release. 55(1):3–12 (1998).PubMedCrossRefGoogle Scholar
  18. 18.
    R. Groning, C. Cloer, and R. S. Muller. Development and in vitro evaluation of expandable gastroretentive dosage forms based on compressed collagen sponges. Pharmazie. 61(7):608–612 (2006).PubMedGoogle Scholar
  19. 19.
    R. Groning et al. Compressed collagen sponges as gastroretentive dosage forms: in vitro and in vivo studies. Eur. J. Pharm. Sci. 30(1):1–6 (2007).PubMedCrossRefGoogle Scholar
  20. 20.
    E. A. Klausner et al. Expandable gastroretentive dosage forms. J. Control. Release. 90(2):143–162 (2003).PubMedCrossRefGoogle Scholar
  21. 21.
    D. Duchene, and G. Ponchel. Principle and investigation of the bioadhesion mechanism of solid dosage forms. Biomaterials. 13(10):709–714 (1992).PubMedCrossRefGoogle Scholar
  22. 22.
    Y. Huang et al. Molecular aspects of muco- and bioadhesion: tethered structures and site-specific surfaces. J. Control. Release. 65(1–2):63–71 (2000).PubMedCrossRefGoogle Scholar
  23. 23.
    G. Ponchel, and J. Irache. Specific and non-specific bioadhesive particulate systems for oral delivery to the gastrointestinal tract. Adv. Drug. Deliv. Rev. 34(2–3):191–219 (1998).PubMedCrossRefGoogle Scholar
  24. 24.
    S. L. Tao, and T. A. Desai. Gastrointestinal patch systems for oral drug delivery. Drug Discov. Today. 10(13):909–915 (2005).PubMedCrossRefGoogle Scholar
  25. 25.
    C. Atuma et al. The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. Am. J. Physiol. Gastrointest. Liver Physiol. 280(5):G922–G929 (2001).PubMedGoogle Scholar
  26. 26.
    R. J. Bhaskara, et al. Effect of Polymer Swelling on Mucoadhesion in Various GI Locations. Controlled Release Society symposium, Hawaii. (2005).Google Scholar
  27. 27.
    R. L. Schmitt. Polyethylene oxide. In C R. Raymond, J. S. Paul, and J. W. Paul (eds.), Handbook of pharmaceutical excipients, 4th ed., Pharmaceutical Press and American Pharmaceutical Association, London, 2003, pp. 460–461.Google Scholar
  28. 28.
    G. V. Betageri, D.V. Deshmukh, and R. B. Gupta. Oral sustained-release bioadhesive tablet formulation of didanosine. Drug Dev. Ind. Pharm. 27(2):129–136 (2001).PubMedCrossRefGoogle Scholar
  29. 29.
    A. H. Kibbe. Povidone. In C. R. Raymond, J. S. Paul, and J. W. Paul (eds.), Handbook of pharmaceutical excipients, 4th ed., Pharmaceutical Press and American Pharmaceutical Association, London, 2003, pp. 508–513.Google Scholar
  30. 30.
    W. Wessel, M. Schoog, and E. Winkler. Polyvinylpyrrolidone (PVP), its diagnostic, therapeutic and technical application and consequences thereof. Arzneimittelforschung. 21(10):1468–1482 (1971).PubMedGoogle Scholar
  31. 31.
    S. Y. Hou, V. E. Cowles, and B. Berner. Gastric retentive dosage forms: a review. Crit. Rev. Ther. Drug Carrier Syst. 20(6):459–597 (2003).PubMedCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2009

Authors and Affiliations

  • Ravichandran Mahalingam
    • 1
  • Bhaskara Jasti
    • 1
  • Raj Birudaraj
    • 2
  • Dimitrios Stefanidis
    • 2
  • Robert Killion
    • 2
  • Tom Alfredson
    • 2
  • Pratap Anne
    • 1
  • Xiaoling Li
    • 1
  1. 1.Department of Pharmaceutics and Medicinal Chemistry, T. J. Long School of Pharmacy and Health SciencesUniversity of the PacificStocktonUSA
  2. 2.Roche Palo Alto LLCPalo AltoUSA

Personalised recommendations