AAPS PharmSciTech

, Volume 10, Issue 1, pp 7–20 | Cite as

Polymeric Matrix System for Prolonged Delivery of Tramadol Hydrochloride, Part I: Physicochemical Evaluation

  • H. O. Ammar
  • M. Ghorab
  • S. A. El-Nahhas
  • R. Kamel
Research Article


Management of moderate or severe chronic pain conditions is the burden of clinicians dealing with patients trying to improve their quality of life and diminish their suffering. Although not a new opioid, tramadol has been recently rediscovered and widely used; this may be due to its favorable chronic safety and dependence profiles together with its high potency. Tramadol is a centrally acting analgesic with half-life of ~6 h; therefore, it requires frequent dosing. It is freely soluble in water; hence, judicious selection of retarding formulations is necessary. The current study is focused on the innovation of a novel, simple, monolayer, easy-to-use, cost-effective, and aesthetically acceptable bioadhesive transdermal delivery system overcoming the defects of the conventional “patch” as carrier system for tramadol, ensuring its adequate delivery, along with the physicochemical evaluation of the designed formulations. Monolithic tramadol matrix films of chitosan, different types of Eudragit®, and binary mixtures of both were prepared. As a single-polymer film, chitosan film showed best properties except for somewhat high moisture uptake capacity, insufficient strength and rapid release, and permeation. Polymer blends were monitored in order to optimize both properties and performance. Promising results were obtained, with chitosan–Eudragit® NE30D (1:1) film showing the most desirable combined, sufficiently rapid as well as prolonged release and permeation profiles along with satisfactory organoleptic and physicochemical properties.

Key words

matrix system pain polymers tramadol hydrochloride 


  1. 1.
    J. D. Schim, and P. Stang. Overview of pain management. Pain. Practice. 4:S4–S18 (2004).PubMedCrossRefGoogle Scholar
  2. 2.
    R. B. Raffa. Pharmacology of oral combination analgesics: rational therapy for pain. J. Clin. Pharm. Ther. 26:57–264 (2001).Google Scholar
  3. 3.
    H. Malonne, M. Coffiner, D. Fontaine, B. Sonet, A. Sereno, and A. Peretz. Long-term tolerability of tramadol LP, a once-daily formulation, in patients with osteoarthritis or low back pain. J. Clin. Pharm. Ther. 30:113–120 (2005).PubMedCrossRefGoogle Scholar
  4. 4.
    L. J. Scott, and C. M. Perry. Tramadol, a review of its use in perioperative pain. Drugs. 60(1):139–176 (2000).PubMedCrossRefGoogle Scholar
  5. 5.
    B. R. Olin. Central analgesics. In M. R. Riley (ed.), Drug Facts and Comparisons, 54th ed., Wolters Kluwer, St. Louis, 2000, pp. 817–818.Google Scholar
  6. 6.
    P. J. Fudala, and R. E. Johnson. Development of opioid formulations with limited diversion and abuse potential. Drug Alcohol Depend. 83S:S40–S47 (2006).CrossRefGoogle Scholar
  7. 7.
    B. Thomas, and B. Finnin. The transdermal revolution. Drug Disc. Today. 9(16):697–703 (2004).CrossRefGoogle Scholar
  8. 8.
    C. R. Lee, M. D. Tavish, and E. M. Sorkin. Tramadol: a preliminary review. Drugs. 46:313–340 (1993).PubMedCrossRefGoogle Scholar
  9. 9.
    G. G. Cameron, and J. W. McGinity. Controlled release theophylline tablet formulations containing acrylic resins. Drug Dev. Ind. Pharm. 13:1409–1427 (1987).CrossRefGoogle Scholar
  10. 10.
    Z. Lu, W. Chen, and J. Hamman. Chitosan–polycarbophil complexes in swellable matrix systems for controlled drug release. Curr. Drug Deliv. 4:257–263 (2007).PubMedCrossRefGoogle Scholar
  11. 11.
    G. N. Kalinkova. Studies of beneficial interactions between active medicaments and excipients in pharmaceutical formulations. Int. J. Pharm. 187:1–15 (1999).PubMedCrossRefGoogle Scholar
  12. 12.
    S. Senel, G. Ikinci, S. Kas, A. Yousefi-Rad, M. F. Sargon, and A. A. Hincal. Chitosan films and hydrogels of chlorhexidine gluconate for oral mucosal delivery. Int. J. Pharm. 193:197–203 (2000).PubMedCrossRefGoogle Scholar
  13. 13.
    X. Zhang, Y. Wang, J. Wang, Y. Wang, and S. Li. Effect of pore former on the properties of casted film prepared from blends of Eudragit® NE 30 D and Eudragit® L 30 D-55. Chem. Pharm. Bull. 55(8):1261–1263 (2007).PubMedCrossRefGoogle Scholar
  14. 14.
    C. Amnuaikit, I. Ikeuchi, K. Ogawara, K. Higaki, and T. Kimura. Skin permeation of propranolol from polymeric film containing terpene enhancers for transdermal use. Int. J. Pharm. 289:167–178 (2005).PubMedCrossRefGoogle Scholar
  15. 15.
    S. B. Tiwari, T. K. Murthy, M. R. Pai, P. R. Mehta, and P. B. Chowdary. Controlled release formulation of tramadol hydrochloride using hydrophilic and hydrophobic matrix system. AAPS PharmSciTech. 4(3):1–6 (2003).CrossRefGoogle Scholar
  16. 16.
    B. Mukhejee, S. Mahapatra, R. Gupta, B. Patra, A. Tiwari, and P. Arora. A comparison between povidone–ethylcellulose and povidone–eudragit transdermal dexamethasone matrix patches based on in vitro skin permeation. Eur. J. Pharm. Biopharm. 59:475–483 (2005).CrossRefGoogle Scholar
  17. 17.
    S. Blanchon, G. Couarraze, F. Rieg-Falson, G. Cohen, and F. Puisieux. Permeability of progesterone and a synthetic progestin through methacrylic films. Int. J. Pharm. 72:1–10 (1991).CrossRefGoogle Scholar
  18. 18.
    F. Lecomte, J. Siepmann, M. Walther, R. J. MacRae, and R. Bodmeier. Polymer blends used for the aqueous coating of solid dosage forms: importance of the type of plasticizer. J. Control. Release. 99:1–13 (2004).PubMedCrossRefGoogle Scholar
  19. 19.
    C. Tas, Y. Ozkan, A. Savaser, and T. Baykara. In vitro release studies of chlorpheniramine maleate from gels prepared by different cellulose derivatives. IL Farmaco. 58:605–611 (2003).PubMedCrossRefGoogle Scholar
  20. 20.
    S. N. Murthy, S. R. R. Hiremath, and K. L. K. Paranjothy. Evaluation of carboxymethyl guar films for the formulation of transdermal therapeutic systems. Int. J. Pharm. 272:11–18 (2004).CrossRefGoogle Scholar
  21. 21.
    C. Padula, S. Nicoli, P. Colombo, and P. Santi. Single-layer transdermal film containing lidocaine: modulation of drug release. Eur. J. Pharm. Biopharm. 66(3):422–428 (2007).PubMedCrossRefGoogle Scholar
  22. 22.
    C. M. Heard, S. Johnson, G. Moss, and C. P. Thomas. In vitro transdermal delivery of caffeine, theobromine, theophylline and catechin from extract of Guarana, Paullinia Cupana. Int. J. Pharm. 317(1):26–31 (2006).PubMedCrossRefGoogle Scholar
  23. 23.
    R. Panchagula, R. Bokalial, P. Sharma, and S. Khandavilli. Transdermal delivery of naloxone: skin permeation, pharmacokinetic, irritancy and stability studies. Int. J. Pharm. 293:213–223 (2005).CrossRefGoogle Scholar
  24. 24.
    I. Z. Schroeder, P. Franke, U. F. Schaefer, and C. Lehr. Development and characterization of film forming polymeric solutions for skin drug delivery. Eur. J. Pharm. Biopharm. 65:111–121 (2007).CrossRefGoogle Scholar
  25. 25.
    M. E. Aulton, and M. H. Abdul-Razzak. The mechanical properties of hydroxypropylmethylcellulose films derived from aqueous systems, part 1: the influence of plasticizers. Drug. Dev. Ind. Pharm. 7:649–668 (1981).CrossRefGoogle Scholar
  26. 26.
    A. M. Wokovich, S. Prodduturi, W. H. Doub, A. S. Hussain, and L. F. Buhse. TDDS adhesion as a critical safety, efficacy and quality attribute. Eur. J. Pharm. Biopharm. 64:1–8 (2006).PubMedCrossRefGoogle Scholar
  27. 27.
    S. Wittaya-areekul, C. Prahsarn, and S. Sungthongjeen. Development and in vitro evaluation of chitosan–eudragit RS 30D composite wound dressings. AAPS PharmSciTech. 7(1):Article30 (2006).CrossRefGoogle Scholar
  28. 28.
    C. Reumnan-Lopez, and R. Bodmeier. Mechanical and water vapor transmission properties of polysaccharide films. Drug. Dev. Ind. Pharm. 22:1201–1209 (1996).CrossRefGoogle Scholar
  29. 29.
    J. Viyoch, T. Sudedmark, W. Srema, and W. Suwongkrua. Development of hydrogel patch for controlled release of alpha-hydroxy acid contained in tamarind fruit pulp extract. Int. J. Cosmet. Sci. 27:89–99 (2005).PubMedCrossRefGoogle Scholar
  30. 30.
    M. R. Harris, and I. Ghebre-Sellassie. Aqueous polymeric coating for modified release oral dosage forms. In J. W. McGinity (ed.), Aqueous Polymeric Coatings for Pharmaceutical Dosage Forms, 2nd ed, Marcel Dekker, New York, 1997, pp. 81–100.Google Scholar
  31. 31.
    Eudragit® Handbook. Rohm GmbH, Darmstadt, Germany, 1997.Google Scholar
  32. 32.
    J. Fang, Y. Huang, H. Lin, and Y. Tsai. Transdermal iontophoresis of sodium nonivamide acetate. IV. Effect of polymer formulations. Int. J. Pharm. 173:127–140 (1998).CrossRefGoogle Scholar
  33. 33.
    P. Rama Rao, and P. V. Diwan. Formulation and in vitro evaluation of polymeric films of diltiazem hydrochloride and indomethacin for transdermal administration. Drug Dev. Ind. Pharm. 24:327–336 (1998).CrossRefGoogle Scholar
  34. 34.
    A. D. Woolfson, D. F. McCafferty, and G. P. Moss. Development and characterization of a moisture-activated bioadhesive drug delivery system for a percutaneous local anesthesia. Int. J. Pharm. 169:83–94 (1998).CrossRefGoogle Scholar
  35. 35.
    A. Akhgari, F. Farahmand, A. Garekani, A. Sadeghi, and T. F. Vandamme. Permeability and swelling studies on free films containing inulin in combination with different polymethacrylates aimed for colonic drug delivery. Eur. J. Pharm. Sci. 28:307–314 (2006).PubMedCrossRefGoogle Scholar
  36. 36.
    J. Guo, G. W. Skinner, W. W. Harcum, and P. E. Barnum. Pharmaceutical applications of naturally occurring water-soluble polymers. PharmSciTech Today. 1(6):254–261 (1998).CrossRefGoogle Scholar
  37. 37.
    L. Perioli, V. Ambrogia, M. Riccia, S. Giovagnolia, M. Capuccellab, and C. Rossi. Development of mucoadhesive patches for buccal administration of ibuprofen. J. Cont. Rel. 99:73–82 (2004).CrossRefGoogle Scholar
  38. 38.
    S. Cafaggi, R. Leardi, B. Parodi, E. Caviglioli, E. Russo, and G. Bignardi. Preparation and evaluation of a chitosan salt–poloxamer 407 based matrix for buccal drug delivery. J. Control. Release. 102:159–169 (2005).PubMedCrossRefGoogle Scholar
  39. 39.
    P. Rama Rao, and P. V. Diwan. Permeability studies of cellulose acetate free films for transdermal use: influence of plasticizers. Pharm. Acta Helv. 72:47–51 (1997).CrossRefGoogle Scholar
  40. 40.
    J. Hadgraft. Skin, the final frontier. Int. J. Pharm. 224:1–18 (2001).PubMedCrossRefGoogle Scholar
  41. 41.
    E. Karavas, G. Ktistis, and E. Georgarakis. Miscibility behavior and formation mechanism of stabilized felodipine–polyvinylpyrrolidone amorphous solid dispersions. Drug Dev. Ind. Pharm. 31:473–489 (2005).PubMedCrossRefGoogle Scholar
  42. 42.
    A. L. Iordanskiia, M. M. Feldsteinb, J. Hadgraft, and N. A. Platea. Modeling of the drug delivery from a hydrophilic transdermal therapeutic system across polymer membrane. Eur. J. Pharm Biopharm. 49:287–293 (2000).CrossRefGoogle Scholar
  43. 43.
    Anon. TDDS—general release standards. Pharmacopeial Forum. 14:3860–3865 (1980).Google Scholar
  44. 44.
    K. A. Khan. The concept of dissolution efficiency. J. Pharm. Pharmacol. 27:48–49 (1975).PubMedGoogle Scholar
  45. 45.
    M. C. Gohel, and M. K. Panchal. Novel use of similarity factors f 2 and S d for the development of diltiazem HCl modified-release tablets using a 32 factorial design. Drug Dev. Ind. Pharm. 28:77–87 (2002).PubMedCrossRefGoogle Scholar
  46. 46.
    N. Zaki, G. Awad, N. Mortada, and S. Abd El-Hady. Enhanced bioavailability of metoclopramide HCl by intranasal administration of a mucoadhesive in situ gel with modulated rheological and mucociliary transport properties. Eur. J. Pharm. Sci. 32:296–307 (2007).PubMedCrossRefGoogle Scholar
  47. 47.
    W. I. Higuchi. The analysis of data on the medicament release from ointments. J. Pharm. Sci. 51:802–804 (1962).PubMedCrossRefGoogle Scholar
  48. 48.
    R. W. Korsmeyer, R. Gurny, P. Buri, and N. A. Peppas. Mechanism of solute release from porous hydrophilic polymers. Int. J. Pharm. 15:25–35 (1983).CrossRefGoogle Scholar
  49. 49.
    N. A. Peppas. Analysis of Fickian and non-Fickian drug release from polymers. Pharm. Acta Helv. 60:110–111 (1985).PubMedGoogle Scholar
  50. 50.
    T. Hayachi, H. Kanbe, M. Okada, M. Suzuki, and Y. Ikeda. Formulation study and drug release mechanism of a new theophylline sustained-release preparation. Int. J. Pharm. 304(1–2):91–101 (2005).Google Scholar
  51. 51.
    J. E. Mockel, and C. Lippold. Zero-order drug release from hydrocolloid matrices. Pharm. Res. 10:1066–1070 (1993).PubMedCrossRefGoogle Scholar
  52. 52.
    K. G. Hollenbeck. In J. Swarbrick, and J. C. Boylan. Encyclopedia of pharmaceutical technology, vol 10. Dekker, New York, 1994, pp. 67–69.Google Scholar
  53. 53.
    M. Guyot, and F. Fawaz. Design and in vitro evaluation of adhesive matrix for transdermal delivery of propranolol. Int. J. Pharm. 204:171–182 (2000).PubMedCrossRefGoogle Scholar
  54. 54.
    F. Cilurzo, L. Tosi, S. Pagani, and L. Montanari. Polymethacrylates as crystallization inhibitors in monolayer transdermal patches containing ibuprofen. Eur. J. Pharm. Biopharm. 60:61–66 (2005).PubMedCrossRefGoogle Scholar
  55. 55.
    F. Siepmann, V. Le Brun, and J. Siepmann. Drugs acting as plasticizers in polymeric systems: a quantitative treatment. J. Control. Release. 115:298–306 (2006).PubMedCrossRefGoogle Scholar
  56. 56.
    K. Moser, K. Kriwet, Y. N. Kalia, and R. H. Guy. Passive skin permeation enhancement and its quantification in vitro. Eur. J. Pharm. Biopharm. 52:103–112 (2001).PubMedCrossRefGoogle Scholar
  57. 57.
    B. W. Barry. Dermatologic formulations: Percutaneous absorption, Marcel Dekker, New York, 1983.Google Scholar
  58. 58.
    G. L. Flynn, S. H. Yalkowsky, and T. J. Rosemann. Mass transport phenomena and models: theoretical concepts. J. Pharm. Sci. 63:479–510 (1974).PubMedCrossRefGoogle Scholar
  59. 59.
    P. Lim, X. Liu, L. Kang, P. Ho, Y. Chan, and S. Chan. Limonene GP1/PG organogel as a vehicle in transdermal delivery of haloperidol. Int. J. Pharm. 311(1–2):157–164 (2006).PubMedCrossRefGoogle Scholar
  60. 60.
    A. Casiraghi, F. Cilurzo, and L. Montanari. In vitro skin permeation of soy isoflavones. Communication 55, Symposuim Skin and Formulation. Paris, 2003.Google Scholar
  61. 61.
    K. Tojo, and T. Hikima. Bioequivalence of marketed transdermal delivery systems for tulobuterol. Biol. Pharm. Bull. 30(8):1576–1579 (2007).PubMedCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2009

Authors and Affiliations

  • H. O. Ammar
    • 1
  • M. Ghorab
    • 2
  • S. A. El-Nahhas
    • 1
  • R. Kamel
    • 1
  1. 1.Department of Pharmaceutical TechnologyNational Research CenterCairoEgypt
  2. 2.Department of Pharmaceutics and Industrial Pharmacy, Faculty of PharmacyCairo UniversityCairoEgypt

Personalised recommendations