Skip to main content
Log in

Monitoring Granulation Rate Processes Using Three PAT Tools in a Pilot-Scale Fluidized Bed

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The purpose of this research was to analyze and compare the responses of three Process Analytical Technology (PAT) techniques applied simultaneously to monitor a pilot-scale fluidized bed granulation process. Real-time measurements using focused beam reflectance measurement (Lasentec FBRM) and near-infra red spectroscopy (Bruker NIR) were taken by inserting in-line probes into the fluidized bed. Non-intrusive acoustic emission measurements (Physical Acoustic AE) were performed by attaching piezoelectric sensors on the external wall of the fluidized bed. Powder samples were collected at regular intervals during the granulation process and characterized offline using laser diffraction, scanning electron microscopy, stereo-optical microscopy and loss on drying method. PAT data comprising chord length distribution and chord count (from FBRM), absorption spectra (from NIR) and average signal levels and counts (from AE) were compared with the particle properties measured using offline samples. All three PAT techniques were able to detect the three granulation regimes or rate processes (wetting and nucleation, consolidation and growth, breakage) to varying degrees of sensitivity. Being dependent on optical signals, the sensitivities of the FBRM and NIR techniques were susceptible to fouling on probe windows. The AE technique was sensitive to background fluidizing air flows and external interferences. The sensitivity, strengths and weaknesses of the PAT techniques examined may facilitate the selection of suitable PAT tools for process development and scale-up studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. M. Iveson, P. A. L. Wauters, S. Forrest, J. D. Lister, G. M. H. Meesters, and B. Scarlett. Growth regime map for liquid-bound granules: further development and experimental validation. Powder Technol. 117:83–97 (2001).

    Article  CAS  Google Scholar 

  2. T. Lipsanen, O. Anitikaninen, H. Räikkönen, S. Airaksinen, and J. Ylirruusi. Novel description of a design space for fluidized bed granulation. Int. J. Pharm. 345:101–107 (2007).

    Article  PubMed  CAS  Google Scholar 

  3. B. Rambali, L. Baert, and D. L. Massart. Scaling up of the fluidized bed granulation process. Int. J. Pharm. 252:197–206 (2003).

    Article  PubMed  CAS  Google Scholar 

  4. M. Levin (Ed.). Pharmaceutical process scale-up, 2nd edn., CRC, New York, 2006, pp. xii.

  5. J. D. Cutnell, and W. J. Kenneth. Physics, 4th ed., Wiley, New York, 1998, p. 466.

    Google Scholar 

  6. M. Whitaker, G. R. Baker, J. Westrup, P. A. Goulding, D. R. Rudd, R. M. Belchamber, and P. C. Michael. Application of acoustic emission to the monitoring and end point determination of a high shear granulation process. Int. J. Pharm. 205:79–91 (2000).

    Article  PubMed  CAS  Google Scholar 

  7. H. Tsujimoto, T. Yokoyama, C. C. Huang, and I. Sekiguchi. Monitoring particle fluidization in a fluidized bed granulator with an acoustic emission sensor. Powder Technol. 113:88–96 (2000).

    Article  CAS  Google Scholar 

  8. M. Halstensen, P. D. Bakker, and K. H. Esbensen. Acoustic chemometric monitoring of an industrial granulation production process—a PAT feasibility study. Chemome. Intell. Lab. Syst. 84:88–97 (2006).

    Article  CAS  Google Scholar 

  9. K. Naelapää, P. Veski, J. G. Pedersen, D. Anov, P. Jorgensen, H. G. Kristensen, and P. Bertelsen. Acoustic monitoring of a fluidized bed coating process. Int. J. Pharm. 332:90–97 (2007).

    Article  PubMed  Google Scholar 

  10. S. Watano, and K. Miyanami. Image processing for on-line monitoring of granule size distribution and shape in fluidized bed granulation. Powder Technol. 83:55–60 (1995).

    Article  CAS  Google Scholar 

  11. Z. Q. Yu, R. B. H. Tan, and P. S. Chow. Effects of operating conditions on agglomeration and habit of paracetamol crystals in anti-solvent crystallization. J. Crystal Growth. 279:477–488 (2005).

    Article  CAS  Google Scholar 

  12. M. Li, D. Wilkinson, and K. Patchigolla. Obtaining particle size distribution from chord length measurements. Part. Part. Syst. Charact. 23:70–174 (2006).

    Article  CAS  Google Scholar 

  13. J. Worlitschek, and T. Hocker. Restoration of PSD from chord length distribution using the method of projects onto convex sets. Part. Part. Syst. Charact. 22:81–98 (2005).

    Article  Google Scholar 

  14. F. Sistare, L. S. P. Berry, and C. A. Mojica. Process Analytical Technology: an investment in process knowledge. Organic Process Res. Dev. 9:332–336 (2005).

    Article  CAS  Google Scholar 

  15. W. P. Findlay, R. P. Garnet, and K. R. Morris. Determination of fluidized bed granulation end point using near-infrared spectroscopy and phenomenological analysis. J. Pharm. Sci. 94:604–612 (2005).

    Article  PubMed  CAS  Google Scholar 

  16. J. Rantanen, E. Rasanen, J. Tenhunen, M. Kansakoski, J.K. Mannermaa, and J. Yliruusi. In-line moisture measurement during granulation with a four-wavelength near infrared sensor: an evaluation of particle size and binder effects. Eur. J. Pharm. Biopharm. 50:271–276 (2000).

    Article  PubMed  CAS  Google Scholar 

  17. J. Rantanen, S. Lehtola, P. Ramet, J. P. Mannermaa, and J. Yliruusi. On-line monitoring of moisture content in an instrumented fluidized bed granulator with a multi-channel NIR moisture sensor. Powder Technol. 99:163–170 (1998).

    Article  CAS  Google Scholar 

  18. P. Frake, D. Greenhalgh, S. M. Grierson, J. M. Hempenstall, and D. R. Rudd. Process control and end-point determination of a fluid bed granulation by application of near infra-red spectroscopy. Int. J. Pharm. 151:75–80 (1997).

    Article  CAS  Google Scholar 

  19. F. J. S. Nieuwmeyer, M. Damen, A. Gerich, F. Rusmini, K. V. D. V. Maarschalk, and H. Vromans. Granule characterization during fluid bed drying by development of a near infrared method to determine water content and median granule size. Pharm. Res. 24:1854–1861 (2007). doi:10.1007/s11095-007-9305-5.

    Article  PubMed  CAS  Google Scholar 

  20. B. J. Ennis, and J. D. Litster. Particle size enlargement. In R. Perry, and D. Green (eds.), Perry’s Chemical Engineers’ Handbook, 7th edn, McGraw-Hill, New York, 1997, pp. 20–56, 20–89.

    Google Scholar 

  21. K. P. Hapgood, S. M. Iveson, J. D. Lister, and L. X. Liu. Granulation rate processes. In A.D. Salman, M. J. Hounslow, and J. P. K. Seville (eds.), Handbook of powder technology, volume 11 Granulation, Elsevier, Oxford, 2007, pp. 899, 934–935.

    Google Scholar 

  22. D. Geldart. Types of fluidization. Powder Technol. 7:285 (1973).

    Article  CAS  Google Scholar 

  23. D. Kunii, and O. Levenspiel. Fluidization engineering, Butterworth-Heinemann, Toronto, 1991.

    Google Scholar 

  24. A. R. Heath, P. D. Fawell, P. A. Bahri, and J. D. Swift. Estimating average particle size by focused beam reflectance measurement (FBRM). Part. Part. Syst. Charact. 19:84–95 (2002).

    Article  Google Scholar 

  25. J. Worlitschek, and M. Mazzotti. Choice of the focal point position using Lasentec FBRM. Part. Part. Syst. Charact. 20:12–17 (2002).

    Article  Google Scholar 

  26. S. Watano. Direct control of wet granulation processes by image processing system. Powder Technol. 117:163–172 (2001).

    Article  CAS  Google Scholar 

  27. S. Wold, J. Cheney, N. Kettaneh, and C. McCready. The chemometric analysis of point and dynamic data in pharmaceutical and biotech production (PAT)—some objectives and approaches. Chemome. Intell. Lab. Syst. 84:159–163 (2006).

    Article  CAS  Google Scholar 

  28. G. Reich. Near-infrared spectroscopy and imaging: basic principles and pharmaceutical applications. Adv. Drug Deliver. Rev. 57:1109–1143 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Science and Engineering Research Council of A*STAR (Agency for Science, Technology and Research).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wai Kiong Ng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tok, A.T., Goh, X., Ng, W.K. et al. Monitoring Granulation Rate Processes Using Three PAT Tools in a Pilot-Scale Fluidized Bed. AAPS PharmSciTech 9, 1083–1091 (2008). https://doi.org/10.1208/s12249-008-9145-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-008-9145-6

Key words

Navigation