AAPS PharmSciTech

, Volume 9, Issue 3, pp 755–761 | Cite as

Application of a Four-fluid Nozzle Spray Drier to Prepare Inhalable Rifampicin-containing Mannitol Microparticles

Research Article


The purpose of this study was to use a four-fluid nozzle spray drier as a new one-step method for preparing rifampicin (RFP)-containing mannitol microparticles. A RFP-acetone/methanol (2:1) solution and aqueous solutions of mannitol (MAN) were simultaneously supplied through different liquid passages of a four-fluid nozzle spray drier and then dried to obtain MAN microparticles containing RFP. Using a cascade impactor, the in vitro aerosol performance of RFP powder and RFP-MAN microparticles with 1:5, 1:10, and 1:20 ratios was compared. The in vivo retention of RFP in the lungs of rats after intratracheal administration of 1:20 RFP-MAN microparticles was also compared. The RFP-MAN microparticles had better aerosol performance than RFP powder and delivery to the lung stages improved as the fraction of MAN was increased. For the 1:20 RFP-MAN microparticles, deposition in stages 2–7 was approximately 43%, which is sufficient for treatment. Approximately 8% of the RFP-MAN microparticles were deposited in stages 6–7, which corresponds to alveoli containing alveolar macrophages. The initial retention of RFP in the lung following pulmonary delivery of 1:20 RFP-MAN microparticles was higher than following oral or intravenous administration of RFP, but the elimination was rapid, resulting in the disappearance of RFP from the lung within 4 h. The plasma concentration–time profile of RFP after intratracheal administration of 1:20 RFP-MAN microparticles was consistent with the profile for RFP retention in the lung. Addition of cholesterol or phosphatidylcholine to RFP had little effect on its retention in the lung. The RFP-MAN microparticles were effective for delivery of RFP to the lung, but the RFP rapidly removed from the lung into the blood circulation. This study demonstrated that RFP-containing MAN microparticles prepared in one step using the four-fluid nozzle spray drier efficiently deliver RFP to the lung, although methods must be developed to prolong its retention and improve targeting to alveolar macrophages.

Key words

four-fluid nozzle inhalation microparticles spray dry tuberculosis 



This work was supported in part by a Grant-in-Aid for Scientific Research (C) (17590041) of Japan Society for the Promotion of Science.


  1. 1.
    E. Merisko-Liversidge, G. G. Liversidge, and E. R. Cooper. Nanosizing: a formulation approach for poorly water-soluble compounds. Eur. J. Pharm. Sci. 18:113–120 (2003).PubMedCrossRefGoogle Scholar
  2. 2.
    N. Rasenack, N. H. Hartenhauer, and B. W. Muller. Microcrystals for dissolution rate enhancement of poorly water-soluble drugs. Int. J. Pharm. 254:137–145 (2003).PubMedCrossRefGoogle Scholar
  3. 3.
    N. Rasenack, and B. W. Muller. Dissolution rate enhancement by in situ micronization of poorly water-soluble drugs. Pharm. Res. 19:1894–1900 (2002).PubMedCrossRefGoogle Scholar
  4. 4.
    T. L. Rogers, K. A. Overhoff, P. Shah, M. J. Santiago Yacaman, K. P. Johnston, and R. O. William 3rd. Micronized powders of a poorly water soluble drug produced by a spray-freezing into liquid-emulsion process. Eur. J. Pharm. Biopharm. 55:161–172 (2003).PubMedCrossRefGoogle Scholar
  5. 5.
    T. L. Rogers, A. C. Nelsen, J. Hu, J. N. Brown, M. Sarkari, T. J. Young, K. P. Johnston, and R. O. William Jr. A novel particle engineering technology to enhance dissolution of poorly water soluble drugs: spray-freezing into liquid. Eur. J. Pharm. Biopharm. 54:271–280 (2002).PubMedCrossRefGoogle Scholar
  6. 6.
    A. Billon, B. Bataille, G. Cassanas, and M. Jacob. Development of spray-dried acetaminophen microparticles using experimental designs. Int. J. Pharm. 203:159–168 (2000).PubMedCrossRefGoogle Scholar
  7. 7.
    C. R. Muller, V. L. Bassani, A. R. Pohlmann, C. B. Michalowski, P. R. Petrovick, and S. S. Guterres. Preparation and characterization of spray-dried polymeric nanocapsules. Drug. Dev. Ind. Pharm. 26:343–347 (2000).PubMedCrossRefGoogle Scholar
  8. 8.
    M. D. L. Moretti, E. Gavini, C. Juliano, and G. P. Pirisino Giunchedi. Spray-dried microspheres containing ketoprofen formulated into capsules and tablets. J. Microencapsul. 18:111–121 (2001).PubMedCrossRefGoogle Scholar
  9. 9.
    P. D. Martino, M. Scoppa, E. EJoiris, G. F. Palmieri, C. Andres, Y. Pourcelot, and S. Martelli. The spray drying of acetazolamide as method to modify crystal properties and to improve compression behavior. Int. J. Pharm. 213:209–221 (2001).PubMedCrossRefGoogle Scholar
  10. 10.
    O. C. Chidavaenzi, G. Buckton, and F. Koosha. The effect of co-spray drying with polyethylene glycol 4000 on the crystallinity and physical form of lactose. Int. J. Pharm. 216:43–49 (2001).PubMedCrossRefGoogle Scholar
  11. 11.
    L. Mu, and S. S. Feng. Fabrication, characterization and in vitro release of paclitaxel (Taxol) loaded poly(lactic-co-glycolic acid) microspheres prepared by spray drying technique with lipid/cholesterol emulsifiers. J. Control. Release. 76:39–254 (2001).CrossRefGoogle Scholar
  12. 12.
    M. Asada, H. Takahashi, H. Okamoto, H. Tanino, and K. Danjo. Theophylline particle design using chitosan by the spray drying. Int. J. Pharm. 270:167–174 (2004).PubMedCrossRefGoogle Scholar
  13. 13.
    G. Dollo, P. Le Corre, A. Guerin, F. Chevanne, J. L. Burgot, and R. Leverge. Spray-dried redispersible oil-in-water emulsion to improve oral bioavailability of poorly soluble drugs. Eur. J. Pharm. Biopharm. 19:273–280 (2004).Google Scholar
  14. 14.
    T. Ozeki, S. Beppu, T. Mizoe, Y. Takashima, Y. Yuasa, and H. Okada. Preparation of two-drug composite microparticles to improve the dissolution of insoluble drug in water for use with the 4-fluid nozzle spray drier. J. Control. Release. 107:387–394 (2005).PubMedCrossRefGoogle Scholar
  15. 15.
    T. Ozeki, S. Beppu, T. Mizoe, Y. Takashima, Y. Yuasa, and H. Okada. Preparation of polymeric submicron particle-containing microparticles using a 4-fluid nozzle spray drier. Pharm. Res. 23:177–183 (2005).CrossRefGoogle Scholar
  16. 16.
    T. Mizoe, S. Beppu, T. Ozeki, and H. Okada. One-step preparation of drug-containing microparticles to enhance the dissolution and absorption of poorly water-soluble drug using a 4-fluid spray drier. J. Control. Release. 120:205–210 (2007a).PubMedCrossRefGoogle Scholar
  17. 17.
    T. Mizoe, S. Beppu, T. Ozeki, and H. Okada. Preparation of drug nanoparticle-containing microparticles using a 4-fluid spray drier for oral, pulmonary, and injection dosage forms. J. Control. Release. 122:10–15 (2007b).PubMedCrossRefGoogle Scholar
  18. 18.
    World Health Organization. Tuberculosis facts, 2007, WHO, Geneva, 2007.Google Scholar
  19. 19.
    P. O’Hara, and A. J. Hickey. Respirable PLGA micro-spheres containing rifampicin for the treatment of tuberculosis: manufacture and characterization. Pharm. Res. 8:955–961 (2000).CrossRefGoogle Scholar
  20. 20.
    R. Sharma, D. Saxena, A. K. Dwivedi, and A. Misra. Inhalable microparticles containing drug combinations to target alveolar microphages for treatment of pulmonary tuberculosis. Pharm. Res. 18:1405–1410 (2001).PubMedCrossRefGoogle Scholar
  21. 21.
    S. Suarez, P. O’Hara, M. Kazantseva, C. E. Newcomer, R. Hopfer, D. N. McMurray, and A. J. Hickey. Respirable microspheres containing rifampicin for the treatment of tuberculosis: screening in an infections disease model. Pharm. Res. 18:1315–1319 (2001).PubMedCrossRefGoogle Scholar
  22. 22.
    S. P. Vyas, M. E. Kannan, S. Jain, V. Mishra, and P. Singh. Design of liposomal aerosols for improved delivery of rifampicin to alveolar microphages. Int. J. Pharm. 269:37–49 (2004).PubMedCrossRefGoogle Scholar
  23. 23.
    K. Makino, T. Nakajima, M. Shikamura, F. Ito, S. Ando, C. Kochi, H. Inagawa, G. Soma, and H. Terada. Efficient intracellular delivery of rifampicin to alveolar macrophages using rifampicin-loaded PLGA microspheres: effect pf molecular weight and composition of PLGA on release of rifampicin. Colloids Surf. B Biointerfaces. 36:35–42 (2004).PubMedCrossRefGoogle Scholar
  24. 24.
    A. Yoshida, M. Matsumoto, H. Hshizume, Y. Oda, T. Tomishige, H. Inagawa, C. Kohchi, M. Hino, F. Ito, K. Tomoda, T. Nakajima, K. Makino, H. Terada, H. Hori, and G. Soma. Selective delivery of rifampicin incorporated into poly(dl-lacyic-co-glycolic) acid microspheres after phagocytotic uptake by alveolar macrophages, and the killing effect against intracellular Mycobacterium bovis Calmette-Guérin. Microbes Infect. 8:2484–2491 (2006).PubMedCrossRefGoogle Scholar
  25. 25.
    K. Hirota, T. Hasegawa, H. Hinata, F. Ito, H. Inagawa, C. Kochi, G. Soma, K. Makino, and H. Terada. Optimum condition for efficient phagocytosis of rifampicin-loaded PLGA microspheres by alveolar macrophages. J. Control. Release. 119:69–76 (2007).PubMedCrossRefGoogle Scholar
  26. 26.
    A. Sharma, S. Sharma, and G. K. Khuller. Lectin-functionalized poly(lactide-co-glycolide) nanoparticles as oral/aerosolized antitubercular drug carriers for treatment of tuberculosis. J. Antimicrob. Chemother. 54:761–766 (2004).PubMedCrossRefGoogle Scholar
  27. 27.
    R. Pandey, S. Sharma, and G. K. Khuller. Nebulization of liposome encapsulated antitubercular drugs in guinea pigs. Int. J. Antimicrob. Agents. 24:93–94 (2004).PubMedCrossRefGoogle Scholar
  28. 28.
    G. K. Khuller, M. Kapur, and S. Sharma. Liposome technology for drug delivery against mycobacterial infections. Curr. Pharm. Des. 10:3263–3274 (2004).PubMedCrossRefGoogle Scholar
  29. 29.
    R. Pandey, and G. K. Khuller. Antitubecular inhaled therapy: opportunities, progress and challenges. J. Antimicrob. Chemother. 55:430–435 (2005).PubMedCrossRefGoogle Scholar
  30. 30.
    R. Pandey, and G. K. Khuller. Solid lipid particle-based inhalable sustained drug delivery system against experimental tuberculosis. Tuberculosis. 85:227–234 (2005).PubMedCrossRefGoogle Scholar
  31. 31.
    H. Zhou, Y. Zhang, D. L. Biggs, M. C. Manning, T. W. Randolph, U. Christians, B. M. Hybertson, and K. Ng. Microparticle-based lung delivery of INH decreases INH metabolism and targets alveolar macrophages. J. Control. Release. 107:288–299 (2005).PubMedCrossRefGoogle Scholar
  32. 32.
    Y. S. Schwartz, M. I. Dushikin, V. A. Vavilin, E. V. Melnikova, O. M. Khoschenko, V. A. Kozlov, A. P. Agafonov, A. V. Alekseev, Y. Rassadkin, A. M. Shetapalov, M. S. Azaev, D. V. Saraev, P. N. Filimonov, Y. Kurunov, A. V. Svistelnik, V. A. Krasnov, A. Pathak, S. C. Derrick, R. C. Reynolds, S. Morris, and V. M. Blinov. Novel conjugate of moxifloxacin and carboxymethylated glucan with enhanced activity against Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 50:1982–1988 (2006).PubMedCrossRefGoogle Scholar
  33. 33.
    P. Muttil, J. Kaur, K. Kumar, A. B. Yadav, R. Sharma, and A. Misra. Inhalable microparticles containing large payload of anti-tuberculosis drugs. Eur. J. Pharm. Sci. 32:140–150 (2007).PubMedCrossRefGoogle Scholar
  34. 34.
    P. Podczrck. Optimization of the operation conditions of an Andersen-Cascade impactor and the relationship to centrifugal adhesion measurements to aid the development of dry powder inhalations. Int. J. Pharm. 149:51–61 (1997).CrossRefGoogle Scholar
  35. 35.
    European Pharmacopoeia 3rd Ed, Section 2.9. 18-prepartions for inhalation: aerodynamic assessment of fine particles. Council of Europe, Strasbourg, France, pp 113–124, 2001.Google Scholar
  36. 36.
    United States Pharmacopoeia, Chapter 601-physical tests and determinations: aerosols. Rockville, MD, USA, pp 2105–2123, 2003.Google Scholar
  37. 37.
    H. Murakoshi, T. Saotome, Y. Fujii, T. Ozeki, Y. Takashima, H. Yuasa, and H. Okada. Effect of physical properties of carrier particles on drug emission from a dry powder inhaler device. J. Drug Del. Sci. Tech. 15:223–226 (2005).Google Scholar
  38. 38.
    M. Watanabe, T. Ozeki, T. Shibata, H. Murakoshi, Y. Takashima, H. Yuasa, and H. Okada. Effect of shape of sodium salicylate particles on physical property and in vitro aerosol performance of granules prepared by pressure swing granulation method. AAPS Pharm. Sci Tech. 4:Article 64 (2003).Google Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2008

Authors and Affiliations

  1. 1.Laboratory of Pharmaceutics and Drug Delivery, School of PharmacyTokyo University of Pharmacy and Life SciencesTokyoJapan

Personalised recommendations