AAPS PharmSciTech

, Volume 9, Issue 1, pp 39–46 | Cite as

Study of the RESS Process for Producing Beclomethasone-17,21-Dipropionate Particles Suitable for Pulmonary Delivery

Research Article


The purpose of this research was to micronize beclomethasone-17,21-dipropionate (BDP), an anti-inflammatory inhaled corticosteroid commonly used to treat asthma, using the rapid expansion of supercritical solution (RESS) technique. The RESS technique was chosen for its ability to produce both micron particles of high purity for inhalation, and submicron/nano particles as a powder handling aid for use in next generation dry powder inhalers (DPIs). Particle formation experiments were carried out with a capillary RESS system to determine the effect of experimental conditions on the particle size distribution (PSD). The results indicated that the RESS process conditions strongly influenced the particle size and morphology; with the BDP mean particle size decreasing to sub-micron and nanometer dimensions. An increase in the following parameters, i.e. nozzle diameter, BDP mol fraction, system pressure, and system temperature; led to larger particle sizes. Aerodynamic diameters were estimated from the SEM data using three separate relations, which showed that the RESS technique is promising to produce particles suitable for pulmonary delivery.

Key words

asthma beclomethasone dipropionate crystallization micronization supercritical fluid processing 



The authors thank Dr. J. P. Mitchell of Trudell Medical International for the fruitful discussions during this work, Dr. Michiel Van Oort of GlaxoSmithKline, and Mr. Brad Kobe of Surface Science Western for use of the Scanning Electron Microscope. This work was financially supported by the Canadian Natural Science and Engineering Research Council (NSERC) and by the University of Western Ontario Academic Development Fund.


  1. 1.
    P. J. Barnes, S. Pedersen, and W. W. Busse. Efficacy and safety of inhaled corticosteroids. New developments. Am J Respir Crit Care Med. 157(3):1–53 (1998).Google Scholar
  2. 2.
    National Asthma Education and Prevention Program. Expert Panel Report: Guidelines for the Diagnosis and Management of Asthma, Update on Selected Topics 2002. Bethesda, MD. (2003).Google Scholar
  3. 3.
    H. S. Tan, and S. Borsadia. Particle formation using supercritical fluids: Pharmaceutical applications. Exp Opin Ther Patents. 11(5):861–872 (2001).CrossRefGoogle Scholar
  4. 4.
    A. H. L. Chow, H. Y. Tong, P. Chattopadhyay, and B. Y. Shekunov. Particle engineering for pulmonary drug delivery. Pharm Res. 24(3):411–437 (2007).CrossRefGoogle Scholar
  5. 5.
    N. Chew, and H.-K. Chan. Use of solid corrugated particles to enhance powder aerosol performance. Pharm Res. 18(11):1570 (2001).CrossRefGoogle Scholar
  6. 6.
    M. P. Timsina, G. P. Martin, C. Marriott, D. Ganderton, and M. Yianneskis. Drug delivery to the respiratory tract using dry powder inhalers. Int J Pharm. 101(1):1–13 (1994).CrossRefGoogle Scholar
  7. 7.
    H.-K. Chan, P. M. Young, D. Traini, and M. Coates. Dry powder inhalers: challenges and goals for next generation therapies. Pharmaceutical Technology Europe. 19(4):19–24 (2007).Google Scholar
  8. 8.
    M. B. M. N. Dolovich, P. J. Anderson, C. A. Carmargo, N. Chew, C. H. Cole, R. Dhand, J. B. Fink, N. J. Gross, D. R. Hess, A. J. Hickey, C. S. Kim, T. B. Martonen, D. J. Pierson, B. K. Rubin, and G. C. Smaldone. Consensus statement: Aerosols and delivery devices. Respir Care. 45:589–596 (2000).Google Scholar
  9. 9.
    P. M. Young, D. Traini, M. Coates, and H. K. Chang. Recent advances in understanding the influence of composite-formulation properties on the performance of dry powder inhalers. Physica B 394:315–319 (2007).CrossRefGoogle Scholar
  10. 10.
    H. K. Chan, and I. Gonda. Physicochemical characterization of a new respirable form of nedocromil. J Pharm Sci. 84:692–696 (1995).CrossRefGoogle Scholar
  11. 11.
    J. G. Weers, T. E. Tarara, and A. R. Clark. Design of fine particles for pulmonary drug delivery. Expert Opin Drug Deliv. 4(3):297–313 (2007).CrossRefGoogle Scholar
  12. 12.
    I. Pasquali, R. Bettini, and F. Giordano. Solid-state chemistry and particle engineering with supercritical fluids in pharmaceutics. Eur J of Pharm Sci. 27:299–310 (2006).CrossRefGoogle Scholar
  13. 13.
    C. Vemavarapua, M. J. Mollana, M. Lodayaa, and T. E. Needhamb. Design and process aspects of laboratory scale SCF particle formation systems. Int J Pharm. 292(1–2):1–16 (2005).CrossRefGoogle Scholar
  14. 14.
    X. Ye, and C. M. Wai. Making nanomaterials in supercritical fluids: A review. J Chem Ed. 80(2):198–203 (2003).CrossRefGoogle Scholar
  15. 15.
    C. Y. Tai, and C.-S. CHeng. Effect of CO2 on expansion and supersaturation of saturated solutions. AIChE J. 44(4):989–992 (1998).CrossRefGoogle Scholar
  16. 16.
    R. K. Franklin, J. R. Edwards, Y. Chernyak, R. D. Gould, F. Henon, and R. G. Carbonell. Formation of perfluoropolyether coatings by the rapid expansion of supercritical solutions (RESS) process. Part 2: Numerical modeling. Ind Eng Chem Res. 40(26):6127–6139 (2001).CrossRefGoogle Scholar
  17. 17.
    W. C. Hinds. Properties, Behavior, and Measurement of Airborne Particles, Second Edition. Wiley-Interscience, N.Y., USA., (1999).Google Scholar
  18. 18.
    R. M. Carter, and Y. Yan. Measurement of particle shape using digital imaging techniques. J Phys Conf Ser. 15:177–182 (2005).CrossRefGoogle Scholar
  19. 19.
    B. K. Ku, M. S. Emergy, A. D. Maynard, M. R. Stolzenburg, and P. H. McMurry. In situ structure characterization of airborne carbon nanofibres by a tandem mobility-mass analysis. Nanotechnology. 17:3613–3621 (2006).CrossRefGoogle Scholar
  20. 20.
    A. R. Martin, W. H. Finlay, M. J. Brett, and D. Vick. Generation and Recovery of Sub-Micron Diameter Fibrous Aerosols. Proceedings of the 2005 International Conference on MEMS, NANO, and Smart Systems. (2005).Google Scholar
  21. 21.
    Y. Bakhbakhi, P. A. Charpentier, and S. Rohani. Experimental study of the GAS process for producing microparticles of beclomethasone-17,21-dipropionate suitable for pulmonary delivery. Int J Pharm. 309(1–2):71 (2006).CrossRefGoogle Scholar
  22. 22.
    A. Cacciuto, S. Auer, and D. Frenkel. Onset of heterogeneous crystal nucleation in colloidal suspensions. Nature. 428:404–406 (2004).CrossRefGoogle Scholar
  23. 23.
    B. Helfgen, M. Turk, and K. Schaber. Hydrodynamic and aerosol modelling of the rapid expansion of supercritical solutions (RESS-process). J Supercrit Fluids. 26(3):225 (2003).CrossRefGoogle Scholar
  24. 24.
    D. W. Matson, J. L. Fulton, R. C. Petersen, and R. D. Smith. Rapid Expansion of Supercritical Fluid Solution: Solute Formation of Powders, Thin Films and Fibers. Ind Eng Chem Res. 26:2298–2306 (1987).CrossRefGoogle Scholar
  25. 25.
    P. G. Debenedetti, J. W. Tom, X. Kwauk, and S.-D. Yeo. Rapid expansion of supercritical solutions (RESS): Fundamentals and applications. Fluid Phase Equilib. 82:311–321 (1993).CrossRefGoogle Scholar
  26. 26.
    S. Mawson, K. P. Johnston, J. R. Combes, and J. M. DeSimone. Formation of poly(1,1,2,2-tetrahydroperfluorodecyl acrylate) submicron fibers and particles from supercritical carbon dioxide solutions. Macromolecules. 28:3182–3191 (1995).CrossRefGoogle Scholar
  27. 27.
    M. Turk, B. Helfgen, P. Hils, R. Lietzow, and K. Schaber. Micronization of pharmaceutical substances by rapid expansion of supercritical solutions (RESS): experiments and modeling. Part Part Syst Charact. 19:327–335 (2002).CrossRefGoogle Scholar
  28. 28.
    M. Charoenchaitrakool, F. Dehghani, N. R. Foster, and H. K. Chan. Micronization by rapid expansion of supercritical solutions to enhance the dissolution rates of poorly water-soluble pharmaceuticals. Ind Eng Chem Res. 39(12):4794–4802 (2000).CrossRefGoogle Scholar
  29. 29.
    E. Reverchon, G. Donsi, and D. Gorgoglione. Salicylic acid solubilization in supercritical CO2 and its micronization by RESS. J Supercrit Fluids. 6:241–248 (1993).CrossRefGoogle Scholar
  30. 30.
    C. Domingo, E. Berends, and G. M. Van Rosmalen. Precipitation of ultrafine organic crystals from the rapid expansion of supercritical solutions over a capillary and a frit nozzle. J Supercrit Fluids. 10:35–55 (1997).CrossRefGoogle Scholar
  31. 31.
    A. Sane, and M. C. Thies. The formation of fluorinated tetraphenylporphyrin nanoparticles via rapid expansion processes: RESS vs RESOLV. J Phys Chem B. 109(42):19688–19695 (2005). October 27, 2005CrossRefGoogle Scholar
  32. 32.
    T. Hawa, and M. R. Zachariah. Coalescence kinetics of unequal sized nanoparticles. J Aerosol Sci. 37(1):1 (2006).CrossRefGoogle Scholar
  33. 33.
    H. Larhrib, G. P. Martin, C. Marriott, and D. Prime. The influence of carrier and drug morphology on drug delivery from dry powder formulations. Int J Pharm. 257:283–296 (2003).CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2007

Authors and Affiliations

  • Paul A. Charpentier
    • 1
  • Ming Jia
    • 1
  • Rahima A. Lucky
    • 1
  1. 1.Department of Chemical and Biochemical EngineeringUniversity of Western OntarioLondon, OntarioCanada

Personalised recommendations