Skip to main content

Advertisement

Log in

Evaluating a Multiscale Mechanistic Model of the Immune System to Predict Human Immunogenicity for a Biotherapeutic in Phase 1

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

A mechanistic model of the immune response was evaluated for its ability to predict anti-drug antibody (ADA) and their impact on pharmacokinetics (PK) and pharmacodynamics (PD) for a biotherapeutic in a phase 1 clinical trial. Observed ADA incidence ranged from 33 to 67% after single doses and 27–50% after multiple doses. The model captured the single dose incidence well; however, there was overprediction after multiple dosing. The model was updated to include a T-regulatory (Treg) cell mediated tolerance, which reduced the overprediction (relative decrease in predicted incidence rate of 21.5–59.3% across multidose panels) without compromising the single dose predictions (relative decrease in predicted incidence rate of 0.6–13%). The Treg-adjusted model predicted no ADA impact on PK or PD, consistent with the observed data. A prospective phase 2 trial was simulated, including co-medication effects in the form of corticosteroid-induced immunosuppression. Predicted ADA incidences were 0–10%, depending on co-medication dosage. This work demonstrates the utility in applying an integrated, iterative modeling approach to predict ADA during different stages of clinical development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Deehan M, Garces S, Kramer D, Baker MP, Rat D, Roettger Y, et al. Managing unwanted immunogenicity of biologicals. Autoimmun Rev. 2015;14(7):569–74.

    Article  CAS  PubMed  Google Scholar 

  2. Baker MP, Reynolds HM, Lumicisi B, Bryson CJ. Immunogenicity of protein therapeutics: the key causes, consequences and challenges. Self Nonself. 2010;1(4):314–22.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Moticka EJ. Hallmarks of the adaptive immune response. In: Moticka EJ, editor. A historical perspective on evidence-based immunology. Waltham, MA: Elsevier; 2016. p. 9–19.

    Chapter  Google Scholar 

  4. Chen X, Hickling TP, Vicini P. A mechanistic, multiscale mathematical model of immunogenicity for therapeutic proteins: part 2-model applications. CPT Pharmacometrics Syst Pharmacol. 2014;3:e134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen X, Hickling TP, Vicini P. A mechanistic, multiscale mathematical model of immunogenicity for therapeutic proteins: part 1-theoretical model. CPT Pharmacometrics Syst Pharmacol. 2014;3:e133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cload et al. Fibronectin based scaffold domain proteins that bind to myostatin. United States Patent Application US20140107020A1, 2014.

  7. Vita R, Overton JA, Greenbaum JA, Ponomarenko J, Clark JD, Cantrell JR, et al. The immune epitope database (IEDB) 3.0. Nucleic Acids Res. 2015;43(Database issue):D405–12.

    Article  CAS  PubMed  Google Scholar 

  8. Southwood S, Sidney J, Kondo A, del Guercio MF, Appella E, Hoffman S, et al. Several common HLA-DR types share largely overlapping peptide binding repertoires. J Immunol. 1998;160(7):3363–73.

    CAS  PubMed  Google Scholar 

  9. U.S. National Library of Medicine NCfBI. BLASTP Suite for Protein Sequence Queries 2019 [Available from: https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins.

  10. Tirucherai GS JL, Hamuro L, Ahlijanian M, Bechtold C and AbuTarif M. A target-mediated drug disposition model to characterize the PK-PD of BMS-986089 in healthy adults and its application to pediatric dose selection. ASCPT Abstracts. 2017.

  11. Carneiro J, Leon K, Caramalho I, van den Dool C, Gardner R, Oliveira V, et al. When three is not a crowd: a crossregulation model of the dynamics and repertoire selection of regulatory CD4+ T cells. Immunol Rev. 2007;216:48–68.

    Article  PubMed  Google Scholar 

  12. Velez de Mendizabal N, Carneiro J, Sole RV, Goni J, Bragard J, Martinez-Forero I, et al. Modeling the effector - regulatory T cell cross-regulation reveals the intrinsic character of relapses in multiple sclerosis. BMC Syst Biol. 2011;5:114.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Maddur MS, Trinath J, Rabin M, Bolgert F, Guy M, Vallat JM, et al. Intravenous immunoglobulin-mediated expansion of regulatory T cells in autoimmune patients is associated with increased prostaglandin E2 levels in the circulation. Cell Mol Immunol. 2015;12(5):650–2.

    Article  CAS  PubMed  Google Scholar 

  14. Mukhopadhyay S, Varma S, Mohan Kumar HN, Yusaf J, Goyal M, Mehta V, et al. Circulating level of regulatory T cells in rheumatic heart disease: an observational study. Indian Heart J. 2016;68(3):342–8.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wilson LD, Zaldivar FP, Schwindt CD, Wang-Rodriguez J, Cooper DM. Circulating T-regulatory cells, exercise and the elite adolescent swimmer. Pediatr Exerc Sci. 2009;21(3):305–17.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mager DE, Moledina N, Jusko WJ. Relative immunosuppressive potency of therapeutic corticosteroids measured by whole blood lymphocyte proliferation. J Pharm Sci. 2003;92(7):1521–5.

    Article  CAS  PubMed  Google Scholar 

  17. Rohatagi S, Barth J, Mollmann H, Hochhaus G, Soldner A, Mollmann C, et al. Pharmacokinetics of methylprednisolone and prednisolone after single and multiple oral administration. J Clin Pharmacol. 1997;37(10):916–25.

    Article  CAS  PubMed  Google Scholar 

  18. Xu J, Winkler J. Derendorf H. a pharmacokinetic/pharmacodynamic approach to predict total prednisolone concentrations in human plasma. J Pharmacokinet Pharmacodyn. 2007;34(3):355–72.

    Article  CAS  PubMed  Google Scholar 

  19. Karosiene E, Rasmussen M, Blicher T, Lund O, Buus S, Nielsen M. NetMHCIIpan-3.0, a common pan-specific MHC class II prediction method including all three human MHC class II isotypes, HLA-DR, HLA-DP and HLA-DQ. Immunogenetics. 2013;65(10):711–24.

    Article  CAS  PubMed  Google Scholar 

  20. The dbMHC database provides an open, publicly accessible platform for DNA and clinical data related to the human Major Histocompatibility Complex (MHC). Produced and maintained in cooperation with the Medical University Graz, Austria. [Available from: https://www.ncbi.nlm.nih.gov/gv/mhc/main.fcgi?cmd=init.

  21. 2010–2102 CoID. Section 1: active and passive immunization: immunocompromised children. Red book: 2012 report of the Committee on Infectious Diseases. 29th ed. Elk Grove Village: American Academy of Pediatrics; 2012. p. 81–2.

    Google Scholar 

  22. Bryson CJ, Jones TD, Baker MP. Prediction of immunogenicity of therapeutic proteins: validity of computational tools. BioDrugs. 2010;24:1):1–8.

    Article  PubMed  Google Scholar 

  23. De Groot AS, Martin W. Reducing risk, improving outcomes: bioengineering less immunogenic protein therapeutics. Clin Immunol. 2009;131(2):189–201.

    Article  PubMed  Google Scholar 

  24. Caron E, Kowalewski DJ, Chiek Koh C, Sturm T, Schuster H, Aebersold R. Analysis of major histocompatibility complex (MHC) immunopeptidomes using mass spectrometry. Mol Cell Proteomics. 2015;14(12):3105–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Faulkner L, Gibson A, Sullivan A, Tailor A, Usui T, Alfirevic A, et al. Detection of primary T cell responses to drugs and chemicals in HLA-typed volunteers: implications for the prediction of drug immunogenicity. Toxicol Sci. 2016;154(2):416–29.

    Article  CAS  PubMed  Google Scholar 

  26. Karle A, Spindeldreher S, Kolbinger F. Secukinumab, a novel anti-IL-17A antibody, shows low immunogenicity potential in human in vitro assays comparable to other marketed biotherapeutics with low clinical immunogenicity. MAbs. 2016;8(3):536–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schwartz RH. Historical overview of immunological tolerance. Cold Spring Harb Perspect Biol. 2012;4(4):a006908.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Szczepanik M. Mechanisms of immunological tolerance to the antigens of the central nervous system. Skin-induced tolerance as a new therapeutic concept. J Physiol Pharmacol. 2011;62(2):159–65.

    CAS  PubMed  Google Scholar 

  29. Boer MC, Joosten SA, Ottenhoff TH. Regulatory T-cells at the interface between human host and pathogens in infectious diseases and vaccination. Front Immunol. 2015;6:217.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Joosten SA, Ottenhoff TH. Human CD4 and CD8 regulatory T cells in infectious diseases and vaccination. Hum Immunol. 2008;69(11):760–70.

    Article  CAS  PubMed  Google Scholar 

  31. Miller SD, Turley DM, Podojil JR. Antigen-specific tolerance strategies for the prevention and treatment of autoimmune disease. Nat Rev Immunol. 2007;7(9):665–77.

    Article  CAS  PubMed  Google Scholar 

  32. Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133(5):775–87.

    Article  CAS  PubMed  Google Scholar 

  33. Takahashi T, Kuniyasu Y, Toda M, Sakaguchi N, Itoh M, Iwata M, et al. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int Immunol. 1998;10(12):1969–80.

    Article  CAS  PubMed  Google Scholar 

  34. von Herrath MG, Harrison LC. Antigen-induced regulatory T cells in autoimmunity. Nat Rev Immunol. 2003;3(3):223–32.

    Article  Google Scholar 

  35. Anderson PO, Manzo BA, Sundstedt A, Minaee S, Symonds A, Khalid S, et al. Persistent antigenic stimulation alters the transcription program in T cells, resulting in antigen-specific tolerance. Eur J Immunol. 2006;36(6):1374–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xue L, Fiscella M, Rajadhyaksha M, Goyal J, Holland C, Gorovits B, et al. Pre-existing biotherapeutic-reactive antibodies: survey results within the American Association of Pharmaceutical Scientists. AAPS J. 2013;15(3):852–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xue L, Rup B. Evaluation of pre-existing antibody presence as a risk factor for posttreatment anti-drug antibody induction: analysis of human clinical study data for multiple biotherapeutics. AAPS J. 2013;15(3):893–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gomez-Mantilla JD, Troconiz IF, Parra-Guillen Z, Garrido MJ. Review on modeling anti-antibody responses to monoclonal antibodies. J Pharmacokinet Pharmacodyn. 2014;41(5):523–36.

    Article  CAS  PubMed  Google Scholar 

  39. Perez Ruixo JJ, Ma P, Chow AT. The utility of modeling and simulation approaches to evaluate immunogenicity effect on the therapeutic protein pharmacokinetics. AAPS J. 2013;15(1):172–82.

    Article  PubMed  Google Scholar 

  40. Thway TM, Magana I, Bautista A, Jawa V, Gu W, Ma M. Impact of anti-drug antibodies in preclinical pharmacokinetic assessment. AAPS J. 2013;15(3):856–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang YM, Jawa V, Ma M. Immunogenicity and PK/PD evaluation in biotherapeutic drug development: scientific considerations for bioanalytical methods and data analysis. Bioanalysis. 2014;6(1):79–87.

    Article  PubMed  Google Scholar 

  42. Parra-Guillen ZP, Janda A, Alzuguren P, Berraondo P, Hernandez-Alcoceba R, Troconiz IF. Target-mediated disposition model describing the dynamics of IL12 and IFNgamma after administration of a mifepristone-inducible adenoviral vector for IL-12 expression in mice. AAPS J. 2013;15(1):183–94.

    Article  CAS  PubMed  Google Scholar 

  43. Gokemeijer J, Jawa V, Mitra-Kaushik S. How close are we to profiling immunogenicity risk using in silico algorithms and in vitro methods?: an industry perspective. AAPS J. 2017;19(6):1587–92.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the patients from the early clinical trial for contributing valuable data to support the analysis. We would like to thank Xiaoying Chen, Tim Hickling, and Paolo Vicini who developed and published the Pfizer model for immunogenicity prediction and made their model code publically available, which enabled our work. The work was partially presented previously in poster form at the 6th American Conference on Pharmacometrics (ACoP) held in Crystal City, VA, USA, in October 2015, and published in the meeting proceedings as abstract T-018 (Article in Journal of Pharmacokinetics and Pharmacodynamics 42:S51-S51, October 2015).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the design of the research. CT and LH wrote the manuscript. SC, AN, CT, and LH performed the research and analyzed data. CT conducted the modeling and simulation.

Corresponding author

Correspondence to Craig J. Thalhauser.

Ethics declarations

Conflict of Interest

All authors were employees of Bristol-Myers Squibb at the time of this work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 22 kb)

ESM 2

(DOCX 16 kb)

ESM 3

(DOCX 57 kb)

ESM 4

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamuro, L., Tirucherai, G.S., Crawford, S.M. et al. Evaluating a Multiscale Mechanistic Model of the Immune System to Predict Human Immunogenicity for a Biotherapeutic in Phase 1. AAPS J 21, 94 (2019). https://doi.org/10.1208/s12248-019-0361-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-019-0361-7

KEY WORDS

Navigation