Advertisement

The AAPS Journal

, 21:80 | Cite as

Population Pharmacokinetics and Pharmacodynamics of Apixaban Linking Its Plasma Concentration to Intrinsic Activated Coagulation Factor X Activity in Japanese Patients with Atrial Fibrillation

  • Satoshi Ueshima
  • Daiki Hira
  • Chiho Tomitsuka
  • Miki Nomura
  • Yuuma Kimura
  • Takuya Yamane
  • Yohei Tabuchi
  • Tomoya Ozawa
  • Hideki Itoh
  • Minoru Horie
  • Tomohiro Terada
  • Toshiya KatsuraEmail author
Research Article
  • 205 Downloads

Abstract

Apixaban is used in the prevention and treatment of patients with deep vein thrombosis or pulmonary embolism, and in the prevention of stroke or systemic embolism in patients with nonvalvular atrial fibrillation (AF). In this study, we aimed to elucidate intrinsic factors affecting efficacy of apixaban by conducting population pharmacokinetic and pharmacodynamic analysis using data from 81 Japanese AF patients. The intrinsic FXa activity was determined to assess the pharmacodynamic effect of apixaban. The pharmacokinetic and pharmacodynamic profiles were described based on a one-compartment model with first-order absorption and a maximum inhibitory model, respectively. Pharmacokinetic and pharmacodynamic analysis was conducted using a nonlinear mixed effect modeling program. The population pharmacokinetic parameters of apixaban were fixed at the reported values in our recent study. The population mean of half-maximal inhibitory concentration (IC50) of apixaban was estimated to be 45.3 ng/mL. The population mean IC50 decreased 27.7% for patients with heart failure, but increased 55% for patients with a medical history of cerebral infarction. In contrast, no covariates affected the population mean of baseline of intrinsic FXa activity (BASE) and maximum effect (Imax) value of apixaban. The population mean of BASE and Imax value were estimated to be 40.2 and 38.4 nmol/min/mg protein, respectively. The present study demonstrates for the first time that the co-morbidity of heart failure as well as the medical history of cerebral infarction are an intrinsic factor affecting the pharmacodynamics of apixaban.

KEY WORDS

apixaban cerebral infarction heart failure population pharmacokinetics and pharmacodynamics 

Notes

Funding Information

This study was supported in part by JSPS KAKENHI Grant Number 15K18938, the Japan Research Foundation for Clinical Pharmacology, and the Uehara Memorial Foundation.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12248_2019_353_MOESM1_ESM.docx (27 kb)
ESM 1 (DOCX 26 kb)
12248_2019_353_MOESM2_ESM.docx (15 kb)
ESM 2 (DOCX 15 kb)

References

  1. 1.
    Pinto DJ, Orwat MJ, Koch S, Rossi KA, Alexander RS, Smallwood A, et al. 1-(4-Methoxyphenyl)-7-oxo-6-(4-(2-oxopiperidin-1-yl)phenyl)-4,5,6,7-tetrahydro-1H-pyrazolo[3,4-c]pyridine-3-carboxamide (apixaban, BMS-562247), a highly potent, selective, efficacious, and orally bioavailable inhibitor of blood coagulation factor Xa. J Med Chem. 2007;50:5339–56.  https://doi.org/10.1021/jm070245n. CrossRefPubMedGoogle Scholar
  2. 2.
    Lassen MR, Raskob GE, Gallus A, Pineo G, Chen D, Hornick P. Apixaban versus enoxaparin for thromboprophylaxis after knee replacement (ADVANCE-2): a randomised double-blind trial. Lancet. 2010;375:807–15.  https://doi.org/10.1016/S0140-6736(09)62125-5.CrossRefPubMedGoogle Scholar
  3. 3.
    Lassen MR, Gallus A, Raskob GE, Pineo G, Chen D, Ramirez LM. Apixaban versus enoxaparin for thromboprophylaxis after hip replacement. N Engl J Med. 2010;363:2487–98.  https://doi.org/10.1056/NEJMoa1006885.CrossRefPubMedGoogle Scholar
  4. 4.
    Agnelli G, Buller HR, Cohen A, Curto M, Gallus AS, Johnson M, et al. Apixaban for extended treatment of venous thromboembolism. N Engl J Med. 2013;368:699–708.  https://doi.org/10.1056/NEJMoa1207541.CrossRefPubMedGoogle Scholar
  5. 5.
    Agnelli G, Buller HR, Cohen A, Curto M, Gallus AS, Johnson M, et al. Oral apixaban for the treatment of acute venous thromboembolism. N Engl J Med. 2013;369:799–808.  https://doi.org/10.1056/NEJMoa1302507.CrossRefPubMedGoogle Scholar
  6. 6.
    Connolly SJ, Eikelboom J, Joyner C, Diener HC, Hart R, Golitsyn S, et al. Apixaban in patients with atrial fibrillation. N Engl J Med. 2011;364:806–17.  https://doi.org/10.1056/NEJMoa1007432.CrossRefPubMedGoogle Scholar
  7. 7.
    Granger CB, Alexander JH, McMurray JJ, Lopes RD, Hylek EM, Hanna M, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2011;365:981–92.  https://doi.org/10.1056/NEJMoa1107039.CrossRefPubMedGoogle Scholar
  8. 8.
    Ogawa S, Shinohara Y, Kanmuri K. Safety and efficacy of the oral direct factor xa inhibitor apixaban in Japanese patients with non-valvular atrial fibrillation. The ARISTOTLE-J study. Circ J. 2011;75:1852–9.  https://doi.org/10.1253/circj.CJ-10-1183.CrossRefPubMedGoogle Scholar
  9. 9.
    Jaspers Focks J, Brouwer MA, Wojdyla DM, Thomas L, Lopes RD, Washam JB, et al. Polypharmacy and effects of apixaban versus warfarin in patients with atrial fibrillation: post hoc analysis of the ARISTOTLE trial. BMJ. 2016;353:i2868.  https://doi.org/10.1136/bmj.i2868.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ruiz Ortiz M, Muñiz J, Raña Míguez P, Roldán I, Marín F, Asunción Esteve-Pastor M, et al. Inappropriate doses of direct oral anticoagulants in real-world clinical practice: prevalence and associated factors. A subanalysis of the FANTASIIA registry. Europace. 2018;20:1577–83.  https://doi.org/10.1093/europace/eux316.CrossRefPubMedGoogle Scholar
  11. 11.
    Wang L, Zhang D, Raghavan N, Yao M, Ma L, Frost CE, et al. In vitro assessment of metabolic drug-drug interaction potential of apixaban through cytochrome P450 phenotyping, inhibition, and induction studies. Drug Metab Dispos. 2010;38:448–58.  https://doi.org/10.1124/dmd.109.029694.CrossRefPubMedGoogle Scholar
  12. 12.
    Gong IY, Kim RB. Importance of pharmacokinetic profile and variability as determinants of dose and response to dabigatran, rivaroxaban, and apixaban. Can J Cardiol. 2013;29:S24–33.  https://doi.org/10.1016/j.cjca.2013.04.002.CrossRefPubMedGoogle Scholar
  13. 13.
    Zhang D, He K, Herbst JJ, Kolb J, Shou W, Wang L, et al. Characterization of efflux transporters involved in distribution and disposition of apixaban. Drug Metab Dispos. 2013;41:827–35.  https://doi.org/10.1124/dmd.112.050260.CrossRefPubMedGoogle Scholar
  14. 14.
    Leil TA, Feng Y, Zhang L, Paccaly A, Mohan P, Pfister M. Quantification of apixaban’s therapeutic utility in prevention of venous thromboembolism: selection of phase III trial dose. Clin Pharmacol Ther. 2010;88:375–82.  https://doi.org/10.1038/clpt.2010.106.CrossRefPubMedGoogle Scholar
  15. 15.
    Leil TA, Frost C, Wang X, Pfister M, LaCreta F. Model-based exposure-response analysis of apixaban to quantify bleeding risk in special populations of subjects undergoing orthopedic surgery. CPT Pharmacometrics Syst Pharmacol. 2014;3:e136.  https://doi.org/10.1038/psp.2014.34.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Byon W, Sweeney K, Frost C, Boyd RA. Population pharmacokinetics, pharmacodynamics, and exploratory exposure-response analyses of apixaban in subjects treated for venous thromboembolism. CPT Pharmacometrics Syst Pharmacol. 2017;6:340–9.  https://doi.org/10.1002/psp4.12184.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Cirincione B, Kowalski K, Nielsen J, Roy A, Thanneer N, Byon W, et al. Population pharmacokinetics of apixaban in subjects with nonvalvular atrial fibrillation. CPT Pharmacometrics Syst Pharmacol. 2018;7:728–38.  https://doi.org/10.1002/psp4.12347.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ueshima S, Hira D, Kimura Y, Fujii R, Tomitsuka C, Yamane T, et al. Population pharmacokinetics and pharmacogenomics of apixaban in Japanese adult patients with atrial fibrillation. Br J Clin Pharmacol. 2018;84:1301–12.  https://doi.org/10.1111/bcp.13561.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Frost C, Wang J, Nepal S, Schuster A, Barrett YC, Mosqueda-Garcia R, et al. Apixaban, an oral, direct factor Xa inhibitor: single dose safety, pharmacokinetics, pharmacodynamics and food effect in healthy subjects. Br J Clin Pharmacol. 2013;75:476–87.  https://doi.org/10.1111/j.1365-2125.2012.04369.x.CrossRefPubMedGoogle Scholar
  20. 20.
    Frost C, Nepal S, Wang J, Schuster A, Byon W, Boyd RA, et al. Safety, pharmacokinetics and pharmacodynamics of multiple oral doses of apixaban, a factor Xa inhibitor, in healthy subjects. Br J Clin Pharmacol. 2013;76:776–86.  https://doi.org/10.1111/bcp.12106.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Yamahira N, Frost C, Fukase H, Yu Z, Wang J, Pursley J, et al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of multiple doses of apixaban in healthy Japanese male subjects. Int J Clin Pharmacol Ther. 2014;52:564–73.  https://doi.org/10.5414/CP201967.CrossRefPubMedGoogle Scholar
  22. 22.
    Upreti VV, Wang J, Barrett YC, Byon W, Boyd RA, Pursley J, et al. Effect of extremes of body weight on the pharmacokinetics, pharmacodynamics, safety and tolerability of apixaban in healthy subjects. Br J Clin Pharmacol. 2013;76:908–16.  https://doi.org/10.1111/bcp.12114.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Frost C, Shenker A, Gandhi MD, Pursley J, Barrett YC, Wang J, et al. Evaluation of the effect of naproxen on the pharmacokinetics and pharmacodynamics of apixaban. Br J Clin Pharmacol. 2014;78:877–85.  https://doi.org/10.1111/bcp.12393.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Tanigawa T, Kaneko M, Hashizume K, Kajikawa M, Ueda H, Tajiri M, et al. Model-based dose selection for phase III rivaroxaban study in Japanese patients with non-valvular atrial fibrillation. Drug Metab Pharmacokinet. 2013;28:59–70.  https://doi.org/10.2133/dmpk.DMPK-12-RG-034.CrossRefPubMedGoogle Scholar
  25. 25.
    Song S, Kang D, Halim AB, Miller R. Population pharmacokinetic-pharmacodynamic modeling analysis of intrinsic FXa and bleeding from edoxaban treatment. J Clin Pharmacol. 2014;54:910–6.  https://doi.org/10.1002/jcph.306.CrossRefPubMedGoogle Scholar
  26. 26.
    Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16:31–41.  https://doi.org/10.1159/000180580.CrossRefPubMedGoogle Scholar
  27. 27.
    Ueshima S, Hira D, Fujii R, Kimura Y, Tomitsuka C, Yamane T, et al. Impact of ABCB1, ABCG2, and CYP3A5 polymorphisms on plasma trough concentrations of apixaban in Japanese patients with atrial fibrillation. Pharmacogenet Genomics. 2017;27:329–36.  https://doi.org/10.1097/FPC.0000000000000294.CrossRefPubMedGoogle Scholar
  28. 28.
    Kubitza D, Becka M, Voith B, Zuehlsdorf M, Wensing G. Safety, pharmacodynamics, and pharmacokinetics of single doses of BAY 59-7939, an oral, direct factor Xa inhibitor. Clin Pharmacol Ther. 2005;78:412–21.  https://doi.org/10.1016/j.clpt.2005.06.011.CrossRefPubMedGoogle Scholar
  29. 29.
    Bradford MM. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.  https://doi.org/10.1016/0003-2697(76)90527-3.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Zhang L, Beal SL, Sheiner LB. Simultaneous vs. sequential analysis for population PK/PD data I: best-case performance. J Pharmacokinet Pharmacodyn. 2003;30:387–404.  https://doi.org/10.1023/B:JOPA.0000012998.04442.1f.CrossRefPubMedGoogle Scholar
  31. 31.
    Zhang L, Beal SL, Sheiner LB. Simultaneous vs. sequential analysis for population PK/PD data II: robustness of methods. J Pharmacokinet Pharmacodyn. 2003;30:405–16.  https://doi.org/10.1023/B:JOPA.0000012999.36063.4e.CrossRefPubMedGoogle Scholar
  32. 32.
    Lindbom L, Pihlgren P, Jonsson EN. PsN-Toolkit—a collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM. Comput Methods Prog Biomed. 2005;79:241–57.  https://doi.org/10.1016/j.cmpb.2005.04.005.CrossRefGoogle Scholar
  33. 33.
    Stroke Prevention in Atrial Fibrillation Investigators. Adjusted-dose warfarin versus low-intensity, fixed-dose warfarin plus aspirin for high-risk patients with atrial fibrillation: Stroke Prevention in Atrial Fibrillation III randomised clinical trial. Lancet. 1996;348:633–8.  https://doi.org/10.1016/S0140-6736(96)03487-3.CrossRefGoogle Scholar
  34. 34.
    Yang ZJ, Sheth SH, Smith CH, Schmotzer AR, Lippello AL, Al-Khafaji A, et al. Plasma from chronic liver disease subjects exhibit differential ability to generate thrombin. Blood Coagul Fibrinolysis. 2015;26:844–7.  https://doi.org/10.1097/MBC.0000000000000365.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Adams MJ, Irish AB, Watts GF, Oostryck R, Dogra GK. Hypercoagulability in chronic kidney disease is associated with coagulation activation but not endothelial function. Thromb Res. 2008;123:374–80.  https://doi.org/10.1016/j.thromres.2008.03.024.CrossRefPubMedGoogle Scholar
  36. 36.
    Tripodi A, Mannucci PM. The coagulopathy of chronic liver disease. N Engl J Med. 2011;365:147–56.  https://doi.org/10.1056/NEJMra1011170.CrossRefPubMedGoogle Scholar
  37. 37.
    Bauer KA, Weiss LM, Sparrow D, Vokonas PS, Rosenberg RD. Aging-associated changes in indices of thrombin generation and protein C activation in humans. Normative Aging Study. J Clin Invest. 1987;80:1527–34.  https://doi.org/10.1172/JCI113238.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Robles-Diaz M, Lucena MI, Kaplowitz N, Stephens C, Medina-Cáliz I, González-Jimenez A, et al. Use of Hy’s law and a new composite algorithm to predict acute liver failure in patients with drug-induced liver injury. Gastroenterology. 2014;147:109–18.  https://doi.org/10.1053/j.gastro.2014.03.050.CrossRefPubMedGoogle Scholar
  39. 39.
    Gage BF, Waterman AD, Shannon W, Boechler M, Rich MW, Radford MJ. Validation of clinical classification schemes for predicting stroke: results from the National Registry of Atrial Fibrillation. JAMA. 2001;285:2864–70.  https://doi.org/10.1001/jama.285.22.2864.CrossRefPubMedGoogle Scholar
  40. 40.
    Rapaport SI, Rao LV. The tissue factor pathway: how it has become a “prima ballerina”. Thromb Haemost. 1995;74:7–17.  https://doi.org/10.1055/s-0038-1642646.CrossRefPubMedGoogle Scholar
  41. 41.
    Brummel-Ziedins KE, Lam PH, Gissel M, Gauthier E, Schneider DJ. Depletion of systemic concentrations of coagulation factors in blood from patients with atherosclerotic vascular disease. Coron Artery Dis. 2013;24:468–74.  https://doi.org/10.1097/MCA.0b013e3283632575.CrossRefPubMedGoogle Scholar
  42. 42.
    He M, Wen Z, He X, Xiong S, Liu F, Xu J, et al. Observation on tissue factor pathway and some other coagulation parameters during the onset of acute cerebrocardiac thrombotic diseases. Thromb Res. 2002;107:223–8.  https://doi.org/10.1016/S0049-3848(02)00331-6.CrossRefPubMedGoogle Scholar
  43. 43.
    Lagishetty CV, Duffull SB. Evaluation of approaches to deal with low-frequency nuisance covariates in population pharmacokinetic analyses. AAPS J. 2015;17:1388–94.  https://doi.org/10.1208/s12248-015-9793-x.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2019

Authors and Affiliations

  • Satoshi Ueshima
    • 1
  • Daiki Hira
    • 1
    • 2
  • Chiho Tomitsuka
    • 1
  • Miki Nomura
    • 1
  • Yuuma Kimura
    • 1
  • Takuya Yamane
    • 1
  • Yohei Tabuchi
    • 2
  • Tomoya Ozawa
    • 3
  • Hideki Itoh
    • 3
  • Minoru Horie
    • 3
    • 4
  • Tomohiro Terada
    • 2
  • Toshiya Katsura
    • 1
    Email author
  1. 1.College of Pharmaceutical SciencesRitsumeikan UniversityKusatsuJapan
  2. 2.Department of PharmacyShiga University of Medical Science HospitalOtsuJapan
  3. 3.Department of Cardiovascular MedicineShiga University of Medical ScienceOtsuJapan
  4. 4.Center for Epidemiologic Research in AsiaShiga University of Medical ScienceOtsuJapan

Personalised recommendations