Skip to main content
Log in

Pediatric Dose Selection and Utility of PBPK in Determining Dose

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Interest in determining safe and efficacious doses for drug administration in pediatric patients has increased dramatically in recent years. However, published pediatric clinical studies have failed to increase proportionally with adult clinical study publications. In order to assess the current state of pediatric dose determination and the supporting role of physiologically based pharmacokinetic modeling and simulation in determining pediatric dose, the pediatric clinical literature (2006–2016) and case examples of pediatric PBPK modeling efforts were reviewed. The objective of this assessment was to investigate the contribution of PBPK to our understanding of the differences between children and adults, which lead to differences in drug dose. Pediatric and adult dose data were available for 31 small molecule drugs. In general, pediatric dose was well-correlated with adult data, with an apparent tendency for higher body weight- or body surface area-normalized pediatric dose. Overall performance of pediatric PBPK modeling approaches was considered to adequately predict observed data. However, model performance was dependent upon age group simulated, with approximately half of neonatal predictions falling outside of 1.5-fold of observed. In conclusion, there is a clear need for further refinement of starting dose in pediatric phase 1 studies, and utilization of PBPK could lead to reduced numbers of patients required to establish safe and efficacious doses in the pediatric population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Act PRE. Pediatric Research Equity Act. J Natl Cancer Inst. 2004;96(24):1810. https://doi.org/10.1093/jnci/96.24.1810.

    Article  Google Scholar 

  2. Ren Z, Zajicek A. Review of the Best Pharmaceuticals for Children Act and the Pediatric Research Equity Act: what can the obstetric community learn from the pediatric experience? Semin Perinatol. 2015;39(7):530–1. https://doi.org/10.1053/j.semperi.2015.08.006.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mahmood I. Dosing in children: a critical review of the pharmacokinetic allometric scaling and modelling approaches in paediatric drug development and clinical settings. Clin Pharmacokinet. 2014;53(4):327–46. https://doi.org/10.1007/s40262-014-0134-5.

    Article  CAS  PubMed  Google Scholar 

  4. Huang SM, Abernethy DR, Wang Y, Zhao P, Zineh I. The utility of modeling and simulation in drug development and regulatory review. J Pharm Sci. 2013;102(9):2912–23. https://doi.org/10.1002/jps.23570.

    Article  CAS  PubMed  Google Scholar 

  5. Wagner C, Pan Y, Hsu V, Grillo JA, Zhang L, Reynolds KS, et al. Predicting the effect of cytochrome P450 inhibitors on substrate drugs: analysis of physiologically based pharmacokinetic modeling submissions to the US Food and Drug Administration. Clin Pharmacokinet. 2015;54(1):117–27. https://doi.org/10.1007/s40262-014-0188-4.

    Article  CAS  PubMed  Google Scholar 

  6. Barrett JS, Della Casa Alberighi O, Laer S, Meibohm B. Physiologically based pharmacokinetic (PBPK) modeling in children. Clin Pharmacol Ther. 2012;92(1):40–9. https://doi.org/10.1038/clpt.2012.64.

    Article  CAS  PubMed  Google Scholar 

  7. Salem F, Johnson TN, Abduljalil K, Tucker GT, Rostami-Hodjegan A. A re-evaluation and validation of ontogeny functions for cytochrome P450 1A2 and 3A4 based on in vivo data. Clin Pharmacokinet. 2014;53(7):625–36. https://doi.org/10.1007/s40262-014-0140-7.

    Article  CAS  PubMed  Google Scholar 

  8. Upreti VV, Wahlstrom JL. Meta-analysis of hepatic cytochrome P450 ontogeny to underwrite the prediction of pediatric pharmacokinetics using physiologically based pharmacokinetic modeling. J Clin Pharmacol. 2016;56(3):266–83. https://doi.org/10.1002/jcph.585.

    Article  CAS  PubMed  Google Scholar 

  9. Lee DP, Skolnik JM, Adamson PC. Pediatric phase I trials in oncology: an analysis of study conduct efficiency. J Clin Oncol. 2005;23(33):8431–41. https://doi.org/10.1200/JCO.2005.02.1568.

    Article  PubMed  Google Scholar 

  10. Le Tourneau C, Lee JJ, Siu LL. Dose escalation methods in phase I cancer clinical trials. J Natl Cancer Inst. 2009;101(10):708–20. https://doi.org/10.1093/jnci/djp079.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Edginton AN, Schmitt W, Voith B, Willmann S. A mechanistic approach for the scaling of clearance in children. Clin Pharmacokinet. 2006;45(7):683–704. https://doi.org/10.2165/00003088-200645070-00004.

    Article  CAS  PubMed  Google Scholar 

  12. Bjorkman S. Prediction of drug disposition in infants and children by means of physiologically based pharmacokinetic (PBPK) modelling: theophylline and midazolam as model drugs. Br J Clin Pharmacol. 2005;59(6):691–704. https://doi.org/10.1111/j.1365-2125.2004.02225.x.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kanakoudi F, Drossou V, Tzimouli V, Diamanti E, Konstantinidis T, Germenis A, et al. Serum concentrations of 10 acute-phase proteins in healthy term and preterm infants from birth to age 6 months. Clin Chem. 1995;41(4):605–8.

    CAS  PubMed  Google Scholar 

  14. Hines RN. The ontogeny of drug metabolism enzymes and implications for adverse drug events. Pharmacol Ther. 2008;118(2):250–67. https://doi.org/10.1016/j.pharmthera.2008.02.005.

    Article  CAS  PubMed  Google Scholar 

  15. Stevens JC, Hines RN, Gu C, Koukouritaki SB, Manro JR, Tandler PJ, et al. Developmental expression of the major human hepatic CYP3A enzymes. J Pharmacol Exp Ther. 2003;307(2):573–82. https://doi.org/10.1124/jpet.103.054841.

    Article  CAS  PubMed  Google Scholar 

  16. Allegaert K, van den Anker JN. Clinical pharmacology in neonates: small size, huge variability. Neonatology. 2014;105(4):344–9. https://doi.org/10.1159/000360648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zane NR, Thakker DR. A physiologically based pharmacokinetic model for voriconazole disposition predicts intestinal first-pass metabolism in children. Clin Pharmacokinet. 2014;53(12):1171–82. https://doi.org/10.1007/s40262-014-0181-y.

    Article  CAS  PubMed  Google Scholar 

  18. Khalil F, Laer S. Physiologically based pharmacokinetic models in the prediction of oral drug exposure over the entire pediatric age range-sotalol as a model drug. AAPS J. 2014;16(2):226–39. https://doi.org/10.1208/s12248-013-9555-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fakhoury M, Litalien C, Medard Y, Cave H, Ezzahir N, Peuchmaur M, et al. Localization and mRNA expression of CYP3A and P-glycoprotein in human duodenum as a function of age. Drug Metab Dispos. 2005;33(11):1603–7. https://doi.org/10.1124/dmd.105.005611.

    Article  CAS  PubMed  Google Scholar 

  20. Johnson TN, Tanner MS, Taylor CJ, Tucker GT. Enterocytic CYP3A4 in a paediatric population: developmental changes and the effect of coeliac disease and cystic fibrosis. Br J Clin Pharmacol. 2001;51(5):451–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Miki Y, Suzuki T, Tazawa C, Blumberg B, Sasano H. Steroid and xenobiotic receptor (SXR), cytochrome P450 3A4 and multidrug resistance gene 1 in human adult and fetal tissues. Mol Cell Endocrinol. 2005;231(1–2):75–85. https://doi.org/10.1016/j.mce.2004.12.005.

    Article  CAS  PubMed  Google Scholar 

  22. Somani AA, Thelen K, Zheng S, Trame MN, Coboeken K, Meyer M, et al. Evaluation of changes in oral drug absorption in preterm and term neonates for Biopharmaceutics Classification System (BCS) class I and II compounds. Br J Clin Pharmacol. 2016;81(1):137–47. https://doi.org/10.1111/bcp.12752.

    Article  CAS  PubMed  Google Scholar 

  23. Rasool MF, Khalil F, Laer S. Predicting stereoselective disposition of carvedilol in adult and pediatric chronic heart failure patients by incorporating pathophysiological changes in organ blood flows-a physiologically based pharmacokinetic approach. Drug Metab Dispos 2016;44(7):1103–1115. doi: https://doi.org/10.1124/dmd.115.068858.

  24. T'Jollyn H, Snoeys J, Vermeulen A, Michelet R, Cuyckens F, Mannens G, et al. Physiologically based pharmacokinetic predictions of tramadol exposure throughout pediatric life: an analysis of the different clearance contributors with emphasis on CYP2D6 maturation. AAPS J. 2015;17(6):1376–87. https://doi.org/10.1208/s12248-015-9803-z.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Thai HT, Mazuir F, Cartot-Cotton S, Veyrat-Follet C. Optimizing pharmacokinetic bridging studies in paediatric oncology using physiologically-based pharmacokinetic modelling: application to docetaxel. Br J Clin Pharmacol. 2015;80(3):534–47. https://doi.org/10.1111/bcp.12702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kersting G, Willmann S, Wurthwein G, Lippert J, Boos J, Hempel G. Physiologically based pharmacokinetic modelling of high- and low-dose etoposide: from adults to children. Cancer Chemother Pharmacol. 2012;69(2):397–405. https://doi.org/10.1007/s00280-011-1706-9.

    Article  CAS  PubMed  Google Scholar 

  27. Zhou W, Johnson TN, Bui KH, Cheung SYA, Li J, Xu H, al-Huniti N, Zhou D Predictive performance of physiologically based pharmacokinetic (PBPK) modeling of drugs extensively metabolized by major cytochrome P450s in children. Clin Pharmacol Ther 2017. doi: https://doi.org/10.1002/cpt.905.

  28. Ginsberg G, Hattis D, Russ A, Sonawane B. Physiologically based pharmacokinetic (PBPK) modeling of caffeine and theophylline in neonates and adults: implications for assessing children’s risks from environmental agents. J Toxicol Environ Health A. 2004;67(4):297–329. https://doi.org/10.1080/15287390490273550.

    Article  CAS  PubMed  Google Scholar 

  29. Krekels EH, Danhof M, Tibboel D, Knibbe CA. Ontogeny of hepatic glucuronidation; methods and results. Curr Drug Metab. 2012;13(6):728–43. https://doi.org/10.2174/138920012800840455.

    Article  CAS  PubMed  Google Scholar 

  30. Jiang XL, Zhao P, Barrett JS, Lesko LJ, Schmidt S. Application of physiologically based pharmacokinetic modeling to predict acetaminophen metabolism and pharmacokinetics in children. CPT Pharmacometrics Syst Pharmacol. 2013;2(10):e80. https://doi.org/10.1038/psp.2013.55.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ogungbenro K, Aarons L, Cresim, Epi CPG. Physiologically based pharmacokinetic modelling of methotrexate and 6-mercaptopurine in adults and children. Part 2: 6-mercaptopurine and its interaction with methotrexate. J Pharmacokinet Pharmacodyn 2014;41(2):173–185. doi: https://doi.org/10.1007/s10928-014-9355-3.

  32. Maharaj AR, Barrett JS, Edginton AN. A workflow example of PBPK modeling to support pediatric research and development: case study with lorazepam. AAPS J. 2013;15(2):455–64. https://doi.org/10.1208/s12248-013-9451-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Parrott N, Davies B, Hoffmann G, Koerner A, Lave T, Prinssen E, et al. Development of a physiologically based model for oseltamivir and simulation of pharmacokinetics in neonates and infants. Clin Pharmacokinet. 2011;50(9):613–23. https://doi.org/10.2165/11592640-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  34. Edginton AN, Schmitt W, Willmann S. Development and evaluation of a generic physiologically based pharmacokinetic model for children. Clin Pharmacokinet. 2006;45(10):1013–34. https://doi.org/10.2165/00003088-200645100-00005.

    Article  CAS  PubMed  Google Scholar 

  35. Yang X, Morris SM, Gearhart JM, Ruark CD, Paule MG, Slikker W, Jr., Mattison DR, Vitiello B, Twaddle NC, Doerge DR, Young JF, Fisher JW Development of a physiologically based model to describe the pharmacokinetics of methylphenidate in juvenile and adult humans and nonhuman primates. PLoS One 2014;9(9):e106101. doi: https://doi.org/10.1371/journal.pone.0106101.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian E. Templeton.

Additional information

Ian E. Templeton and Nicholas S. Jones co-first author.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Templeton, I.E., Jones, N.S. & Musib, L. Pediatric Dose Selection and Utility of PBPK in Determining Dose. AAPS J 20, 31 (2018). https://doi.org/10.1208/s12248-018-0187-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-018-0187-8

KEY WORDS

Navigation