Skip to main content

Advertisement

Log in

Cancer Immunotherapy: Factors Important for the Evaluation of Safety in Nonclinical Studies

  • Review Article
  • Theme: Cancer Immunotherapy: Promises and Challenges
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The development of novel therapies that can harnass the immune system to eradicate cancer is an area of intensive research. Several new biopharmaceuticals that target the immune system rather than the tumor itself have recently been approved and fundamentally transformed treatment of many cancer diseases. This success has intensified the search for new targets and modalities that could be developed as even more effective therapeutic agents either as monotherapy or in combination. While great benefits of novel immunotherapies in oncology are evident, the safety of these therapies has to also be addressed as their desired pharmacology, immune activation, can lead to “exaggerated” effects and toxicity. This review is focused on the unique challenges of the nonclinical safety assessment of monoclonal antibodies that target immune checkpoint inhibitors and costimulatory molecules. This class of molecules represents several approved drugs and many more drug candidates in clinical development, for which significant experience has been gained. Their development illustrates challenges regarding the predictivity of the animal models for assessing safety and setting starting doses for first-in-human trials as well as the translatability of nonclinical in vitro and in vivo data to the human findings. Based on learnings from the experience to date, factors to consider and novel approaches to explore are discussed to help address the unique safety issues of immuno-oncology drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39(1):1–10. https://doi.org/10.1016/j.immuni.2013.07.012.

    Article  PubMed  Google Scholar 

  2. Ponce R. Adverse consequences of immunostimulation. J Immunotoxicol. 2008;5(1):33–41. https://doi.org/10.1080/15476910801897920.

    Article  CAS  PubMed  Google Scholar 

  3. Gribble EJ, Sivakumar PV, Ponce RA, Hughes SD. Toxicity as a result of immunostimulation by biologics. Expert Opin Drug Metab Toxicol. 2007;3(2):209–34. https://doi.org/10.1517/17425255.3.2.209.

    Article  CAS  PubMed  Google Scholar 

  4. Suntharalingam G, Perry MR, Ward S, Brett SJ, Castello-Cortes J, Brunner MD, et al. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med. 2006;355(10):1018–28. https://doi.org/10.1056/NEJMoa063842.

    Article  CAS  PubMed  Google Scholar 

  5. Eastwood D, Findlay L, Poole S, Bird C, Wadhwa M, Moore M, et al. Monoclonal antibody TGN1412 trial failure explained by species differences in CD28 expression on CD4+ effector memory T-cells. Br J Pharmacol. 2010;161(3):512–26. https://doi.org/10.1111/j.1476-5381.2010.00922.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. EMEA/CHMP/SWP/294648/. Guideline on strategies to identify and mitigate risks for first-in-man human clinical trials with investigational medicinal products. 2007.

  7. ICH S9. Nonclinical evaluation for anticancer pharmaceuticals. March 2010. www.ich.org

  8. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64. https://doi.org/10.1038/nrc3239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sanmamed MF, Pastor F, Rodriguez A, Perez-Gracia JL, Rodriguez-Ruiz ME, Jure-Kunkel M, et al. Agonists of co-stimulation in cancer immunotherapy directed against CD137, OX40, GITR, CD27, CD28, and ICOS. Semin Oncol. 2015;42(4):640–55. https://doi.org/10.1053/j.seminoncol.2015.05.014.

    Article  CAS  PubMed  Google Scholar 

  10. Hellmann MD, Friedman CF, Wolchok JD. Combinatorial cancer immunotherapies. Adv Immunol. 2016;130:251–77. https://doi.org/10.1016/bs.ai.2015.12.005.

    Article  PubMed  Google Scholar 

  11. Saber H, Gudi R, Manning M, Wearne E, Leighton JK. An FDA oncology analysis of immune activating products and first-in-human dose selection. Regul Toxicol Pharmacol. 2016;81:448–56. https://doi.org/10.1016/j.yrtph.2016.10.002.

    Article  CAS  PubMed  Google Scholar 

  12. Segal NH, Logan TF, Hodi S, McDermott D, Meleros I, et al. Results from an integrated safety analysis of urelumab, an agonist anti-CD137 monoclonal antibody. Clin Cancer Res. 2016;23(8):1929–36. https://doi.org/10.1158/1078-0432.CCR-16-1272.

    Article  PubMed  Google Scholar 

  13. Melero I, et al. A phase I study of the safety, tolerability, pharmacokinetics, and immunoregulatory activity of urelumab (BMS-663513) in subjects with advanced and/or metastatic solid tumors and relapsed/refractory B-cell non-Hodgkin’s lymphoma (B-NHL) [abstract]. J Clin Oncol. 2013;31(Suppl):TPS3107.

    Google Scholar 

  14. Sznol M, et al. Phase I study of BMS-663513 a fully human anti-CD137 agonist monoclonal antibody, in patients (pts) with advanced cancer (CA) [abstract]. J Clin Oncol. 2008;26(Suppl):a3007.

    Article  Google Scholar 

  15. Ascierto PA, Simeone E, Sznol M, Fu YX, Melero I. Clinical experiences with anti-CD137 and anti-PD1 therapeutic antibodies. Semin Oncol. 2010;37(5):508–16. https://doi.org/10.1053/j.seminoncol.2010.09.008.

    Article  CAS  PubMed  Google Scholar 

  16. Niu L, Strahotin S, Hewes B, Zhang B, Zhang Y, Archer D, et al. Cytokine-mediated disruption of lymphocyte trafficking, hemopoiesis, and induction of lymphopenia, anemia, and thrombocytopenia in anti-CD137-treated mice. J Immunol. 2007;178(7):4194–213. https://doi.org/10.4049/jimmunol.178.7.4194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang M, Baumgart BR, Simutis F, Freebern W, Chadwick K, Bunch RT, Ju C, and Price K. Understanding anti-CD137-induced liver toxicity. In: The Toxicologist: Supplement to Toxicological Sciences, 150 (1), Society of Toxicology, 2016. Abstract no.1323.

  18. Murphy JT, Burey AP, Beebe AM, Gu D, Presta LG, Merghoub T, et al. Anaphylaxis caused by repetitive doses of a GITR agonist monoclonal antibody in mice. Blood. 2014;123(14):2172–80. https://doi.org/10.1182/blood-2013-12-544742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH, et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity. 1995;3(5):541–7. https://doi.org/10.1016/1074-7613(95)90125-6.

    Article  CAS  PubMed  Google Scholar 

  20. Waterhouse P, Penninger JM, Timms E, Wakeham A, Shahinian A, Lee KP, et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science. 1995;270(5238):985–8. https://doi.org/10.1126/science.270.5238.985.

    Article  CAS  PubMed  Google Scholar 

  21. Nishimura H, Nose M, Hiai H, Minato N, Honjo T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity. 1999;11(2):141–51. https://doi.org/10.1016/S1074-7613(00)80089-8.

    Article  CAS  PubMed  Google Scholar 

  22. Dong H, Zhu G, Tamada K, Flies DB, van Deursen JM, Chen L. B7-H1 determines accumulation and deletion of intrahepatic CD8(+) T lymphocytes. Immunity. 2004;20(3):327–36. https://doi.org/10.1016/S1074-7613(04)00050-0.

    Article  CAS  PubMed  Google Scholar 

  23. Nishimura H, Taku Okazaki T, Tanaka Y, Nakatani K, Hara M, Matsumori A, et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science. 2001;291(5502):319–22. https://doi.org/10.1126/science.291.5502.319.

    Article  CAS  PubMed  Google Scholar 

  24. Wang J, Okazaki IM, Yoshida T, Chikuma S, Kato Y, Nakaki F, et al. PD-1 deficiency results in the development of fatal myocarditis in MRL mice. Int Immunol. 2010;22(6):443–52. https://doi.org/10.1093/intimm/dxq026.

    Article  CAS  PubMed  Google Scholar 

  25. Ansari MJ1, Salama AD, Chitnis T, Smith RN, Yagita H, Akiba H, Yamazaki T, Azuma M, Iwai H, Khoury SJ, Auchincloss H Jr, Sayegh MH: The programmed death-1 (PD-1) pathway regulates autoimmune diabetes in nonobese diabetic (NOD) mice. J Exp Med, 2003; 198(1):63–69.

  26. Miyazaki T, Dierich A, Benoist C, Mathis D. LAG-3 is not responsible for selecting T helper cells in CD4-deficient mice. Int Immunol. 1996;8(5):725–9. https://doi.org/10.1093/intimm/8.5.725.

    Article  CAS  PubMed  Google Scholar 

  27. Bettini M, Szymczak-Workman AL, Forbes K, Castellaw AH, Selby M, Pan X, et al. Accelerated autoimmune diabetes in the absence of LAG-3. J Immunol. 2011;187(7):3493–8. https://doi.org/10.4049/jimmunol.1100714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vonderheide RH, Flaherty KT, Khalil M, Stumacher MS, Bajor DL, Hutnick NA, et al. Clinical activity and immune modulation in cancer patients treated with CP-870,893, a novel CD40 agonist monoclonal antibody. J Clin Oncol. 2007;25(7):876–83. https://doi.org/10.1200/JCO.2006.08.3311.

    Article  CAS  PubMed  Google Scholar 

  29. Vonderheide RH, Burg JM, Mick R, Trosko JA, Li D, Shaik MN, et al. Phase I study of the CD40 agonist antibody CP-870,893 combined with carboplatin and paclitaxel in patients with advanced solid tumors. Oncoimmunology. 2013;2(1):e23033. https://doi.org/10.4161/onci.23033.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Beatty GL, Chiorean EG, Fishman MP, Saboury B, Teitelbaum UR, Sun W, et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science. 2011;331(6024):1612–6. https://doi.org/10.1126/science.1198443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Burris HA, Infante JR, Ansell SM, et al. Safety and activity of varlilumab, a novel and first-in-class agonist anti-CD27 antibody, in patients with advanced solid tumors. J Clin Oncol. 2017;35:1–18.

    Article  Google Scholar 

  32. Hodi FS, Mihm MC, Soiffer RJ, Haluska FG, Butler M, Seiden MV, et al. Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc Natl Acad Sci U S A. 2003;100(8):4712–7. https://doi.org/10.1073/pnas.0830997100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Price KD, Rao GK. Biological therapies for cancer. In: Plitnick LM, Herzyk DJ, editors. Nonclinical development of novel biologics, biosimilars, vaccines and specialty biologics. Elsevier Inc.: USA; 2013. p. 303–42. https://doi.org/10.1016/B978-0-12-394810-6.00013-7.

    Chapter  Google Scholar 

  34. Parry RV, Chemnitz JM, Frauwirth KA, Lanfranco AR, Braunstein I, Kobayashi SV, et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol. 2015;25:9543–53.

    Article  Google Scholar 

  35. Francisco LM, Sage PT, Sharpe AH. The PD-1 pathway in tolerance and autoimmunity. Immunol Rev. 2010;236(1):219–42. https://doi.org/10.1111/j.1600-065X.2010.00923.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54. https://doi.org/10.1056/NEJMoa1200690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34. https://doi.org/10.1056/NEJMoa1504030.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ribas A, Hanson DC, Noe DA, Millham R, Guyot DJ, Bernstein SH, et al. Tremelimumab (CP-675,206), a cytotoxic T lymphocyte associated antigen 4 blocking monoclonal antibody in clinical development for patients with cancer. Oncologist. 2007;12(7):873–83. https://doi.org/10.1634/theoncologist.12-7-873.

    Article  CAS  PubMed  Google Scholar 

  39. Price KP, Simutis F, Fletcher A, Ramaiah L, et al. Nonclinical safety evaluation of two distinct second generation variants of anti-CTLA4 monoclonal antibody, ipilimumab, in monkeys. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2017 Oct 26–30; Philadelphia, PA. Philadelphia (PA): AACR; Mol Cancer Ther, 2018;17(1 Suppl):Abstract nr LB-B33.

  40. Wang C, Thudium KB, Han M, Wang XT, Huang H, Feingersh D, et al. In vitro characterization of the anti-PD-1 antibody nivolumab, BMS-936558, and in vivo toxicology in non-human primates. Cancer Immunol Res. 2014;2(9):846–56. https://doi.org/10.1158/2326-6066.CIR-14-0040.

    Article  CAS  PubMed  Google Scholar 

  41. Center for Drug Evaluation and Research Application Number: 125554 Orig1s000, Summary Review for Nivolumab. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/125554Orig1s000SumR.pdf . 2014; Accessed 24 July 2017.

  42. Center for Drug Evaluation and Research Application Number: 125514 Orig1s000, Summary Review for Pembrolizumab. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/125514Orig1s000SumR.pdf . 2014; Accessed 24 July 2017.

  43. Stewart RS, Hammond SA, Oberst M, Wilkinson RW. The role of Fc gamma receptors in the activity of immunomodulatory antibodies for cancer. J Immunother Cancer. 2014;2(1):29–38. https://doi.org/10.1186/s40425-014-0029-x.

    Article  Google Scholar 

  44. Wilson NS, Yang B, Yang A, Loeser S, Marsters S, Lawrence D, et al. An Fcgamma receptor-dependent mechanism drives antibody-mediated target-receptor signaling in cancer cells. Cancer Cell. 2011;19(1):101–13. https://doi.org/10.1016/j.ccr.2010.11.012.

    Article  CAS  PubMed  Google Scholar 

  45. Brennan FR, et al. Safety and immunotoxicity assessment of immunomodulatory monoclonal antibodies. Monoclon Antibodies. 2010;2:233e255.

    Google Scholar 

  46. Spigel D. et al. Clinical activity, safety, and biomarkers of MPDL3280A, an engineered PD-L1 antibody in patients with locally advanced or metastatic non-small cell lung cancer (NSCLC) [ASCO abstract 8008]. J Clin Oncol, 2013; 31(15)(suppl).

  47. Simpson TR, Li F, Montalvo-Ortiz W, Sepulveda MA, Bergerhoff K, Arce F, et al. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti–CTLA-4 therapy against melanoma. J Exp Med. 2013;210(9):1695–710. https://doi.org/10.1084/jem.20130579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ribas A, Kefford R, Marshall MA, Punt CJ, Haanen JB, Marmol M, et al. Phase III randomized clinical trial comparing tremelimumab with standard-of-care chemotherapy in patients with advanced melanoma. J Clin Oncol. 2013;31(5):616–22. https://doi.org/10.1200/JCO.2012.44.6112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ribas A, Comin-Anduix B, Economou JS, Donahue TR, de la Rocha P, Morris LF, et al. Intratumoral immune cell infiltrates, FoxP3, and indoleamine 2,3-dioxygenase in patients with melanoma undergoing CTLA4 blockade. Clin Cancer Res. 2009;15(1):390–9. https://doi.org/10.1158/1078-0432.CCR-08-0783.

    Article  CAS  PubMed  Google Scholar 

  50. Li F, Ravetch JV. Inhibitory Fcgamma receptor engagement drives adjuvant and anti-tumor activities of agonistic CD40 antibodies. Science. 2011;333(6045):1030–4. https://doi.org/10.1126/science.1206954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. White AL, Chan HTC, Roghanian A, French RR, Mockridge CI, Tutt AL, et al. Interaction with FcgammaRIIB is critical for the agonistic activity of anti-CD40 monoclonal antibody. J Immunol. 2011;187(4):1754–63. https://doi.org/10.4049/jimmunol.1101135.

    Article  CAS  PubMed  Google Scholar 

  52. Ravetch JV and Nimmerjahn F. Fc receptors. In: Paul WE, editor. Fundamental Immunology. Lippincott-Raven; 2008. p. 684–705.

  53. Morris NP, Peters C, Montler R, Hu HM, Curti BD, Urba WJ, et al. Development and characterization of recombinant human Fc:OX40L fusion protein linked via a coiled-coil trimerization domain. Mol Immunol. 2007;44(12):3112–21. https://doi.org/10.1016/j.molimm.2007.02.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Vitale LA, He LZ, Thomas LJ, Widger J, Weidlick J, Crocker A, et al. Development of a human monoclonal antibody for potential therapy of CD27-expressing lymphoma and leukemia. Clin Cancer Res. 2012;18(14):3812–21. https://doi.org/10.1158/1078-0432.CCR-11-3308.

    Article  CAS  PubMed  Google Scholar 

  55. Sukumar S, Wilson DC, Yu Ying et al. Characterization of MK-4166, a clinical agonistic mAb that targets human GITR and inhibits the generation and activity of Tregs. Cancer Res; 2017. Published OnlineFirst on June 13, 2017; https://doi.org/10.1158/0008-5472.CAN-16-1439.

  56. Keler T, Halk E, Vitale L, O’Neill T, Blanset D, Lee S, et al. Activity and safety of CTLA-4 blockade combined with vaccines in cynomolgus macaques. J Immunol. 2003;171(11):6251–9. https://doi.org/10.4049/jimmunol.171.11.6251.

    Article  CAS  PubMed  Google Scholar 

  57. Dahan R, Barnhart BC, Li F, Yamniuk AP, Korman AJ, Ravetch JV. Therapeutic activity of agonistic, human anti-CD40 monoclonal antibodies requires selective FcγR engagement. Cancer Cell. 2016;29(6):820–31. https://doi.org/10.1016/j.ccell.2016.05.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Semple KM and Howard KE. Human Fc receptor expression in immune humanized mice. In: The Toxicologist: Supplement to Toxicological Sciences, 156 (1), Society of Toxicology; 2017. Abstract no. 2550.

  59. Howard KE, Zadrozny L, Semple KM, Shea K, and Weaver JL. Autoimmunity induced by ipilimumab in immune humanized mice. In: The Toxicologist: Supplement to Toxicological Sciences, 156 (1), Society of Toxicology; 2017. Abstract no. 1693.

  60. Howard KE, Zadrozny L, and Weaver JL. Immune humanized mouse model: autoimmunity induced by nivolumab. American College of Toxicology; 2016. Abstract no. P516. www.actox.org

  61. Morrissey KM, Yuraszeck TM, Li C-C, Zhang Y, Kasichayala S. Immunotherapy and novel combinations in oncology: current landscape, challenges, and opportunities. Clin Transl Sci. 2016;9(2):89–104. https://doi.org/10.1111/cts.12391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Selby MJ, Engelhardt JJ, Johnston RJ, LS L, Han M, Thudium K, et al. Preclinical development of ipilimumab and nivolumab combination immunotherapy: mouse tumor models, in vitro functional studies, and cynomolgus macaque toxicology. PLoS One. 2016;11(9):e0161779. https://doi.org/10.1371/journal.pone.0161779.

    Article  PubMed  PubMed Central  Google Scholar 

  63. ICH S9 Guideline on nonclinical evaluation for anticancer pharmaceuticals - Qestions and Answers; September 2016 (Step 2).

  64. ICH S5(R2). Detection of toxicity to reproduction for medicinal products and toxicity to male fertility. Addendum dated 9 November 2000, incorporated in November 2005. www.ich.org

  65. ICH S6(R1). Preclinical safety evaluation of biotechnology-derived pharmaceuticals. Parent Guideline dated 16 July 1997, Addendum dated 12 June 2011, incorporated in June 2011. www.ich.org

  66. Warning JC, McCracken SA, Morris JM. A balancing act: mechanisms by which the fetus avoids rejection by the maternal immune system. Reproduction. 2011;141(6):715–24. https://doi.org/10.1530/REP-10-0360.

    Article  CAS  PubMed  Google Scholar 

  67. Aluvihare VR, Kallikourdis M, Betz AG, Regulatory T. Cells mediate maternal tolerance to the fetus. Nat Immunol. 2004;5(3):266–71. https://doi.org/10.1038/ni1037.

    Article  CAS  PubMed  Google Scholar 

  68. Guleria I, Khosroshahi A, Ansari MJ, Habicht A, Azuma M, Yagita H, et al. A critical role for the programmed death ligand 1 in fetomaternal tolerance. J Exp Med. 2005;202(2):231–7. https://doi.org/10.1084/jem.20050019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zenclussen AC, Gerlof K, Zenclussen ML, Sollwedel A, Zambon Bertoja A, Ritter T, et al. Abnormal T-cell reactivity against paternal antigens in spontaneous abortion: adoptive transfer of pregnancy-induced CD4+CD25+ T regulatory cells prevents fetal rejection in a murine abortion model. Am J Pathol. 2005;166(3):811–22. https://doi.org/10.1016/S0002-9440(10)62302-4.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zenclussen AC, Gerlof K, Zenclussen ML, Ritschel S, Zambon Bertoja A, Fest S, et al. Regulatory T cells induce a privileged tolerant microenvironment at the fetal-maternal interface. Eur J Immunol. 2006;36(1):82–94. https://doi.org/10.1002/eji.200535428.

    Article  CAS  PubMed  Google Scholar 

  71. Somerset DA, Zheng Y, Kilby MD, Sansom DM, Drayson MT. Normal human pregnancy is associated with an elevation in the immune suppressive CD25+ CD4+ regulatory T-cell subset. Immunology. 2004;112(1):38–43. https://doi.org/10.1111/j.1365-2567.2004.01869.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Guleria I, Sayegh MH. Maternal acceptance of the fetus: true human tolerance. J Immunol. 2007;178(6):3345–51. https://doi.org/10.4049/jimmunol.178.6.3345.

    Article  CAS  PubMed  Google Scholar 

  73. Kaufman KA, Bowen JA, Tsai AF, Bluestone JA, Hunt JS, Ober C. The CTLA-4 gene is expressed in placental fibroblasts. Mol Hum Reprod. 1999;5(1):84–7. https://doi.org/10.1093/molehr/5.1.84.

    Article  CAS  PubMed  Google Scholar 

  74. Miwa N, Hayakawa S, Miyazaki S, Myojo S, Sasaki Y, Sakai M, et al. IDO expression on decidual and peripheral blood dendritic cells and monocytes/macrophages after treatment with CTLA-4 or interferon-ɣ increase in normal pregnancy but decrease in spontaneous abortion. Mol Hum Reprod. 2005;11(12):865–70. https://doi.org/10.1093/molehr/gah246.

    Article  CAS  PubMed  Google Scholar 

  75. Taglauer ES, Yankee TM, Petroff MG. Maternal PD-1 regulates accumulation of fetal antigen-specific CD8+ T cells in pregnancy. J Reprod Immunol. 2009;80(1-2):12–21. https://doi.org/10.1016/j.jri.2008.12.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wafula PO, Teles A, Schumacher A, Pohl K, Yagita H, Volk H-D, et al. PD-1 but not CTLA-4 blockage abrogates the protective effect of regulatory T cells in a pregnancy murine model. Am J Reprod Immunol. 2009;62(5):283–92. https://doi.org/10.1111/j.1600-0897.2009.00737.x.

    Article  CAS  PubMed  Google Scholar 

  77. Poulet FM, Wolf JJ, Herzyk DJ, DeGeorge JJ. An evaluation of the impact of PD-1 pathway blockade on reproductive safety of therapeutic PD-1 inhibitors. Birth Defects Res. 2016;107(2):108–19. https://doi.org/10.1002/bdrb.21176.

    Article  CAS  Google Scholar 

  78. Prell RA, Halpern WG, Rao GK. Perspective on a modified developmental and reproductive toxicity testing strategy for cancer immunotherapy. Int J Toxicol. 2016;35(3):263–7. https://doi.org/10.1177/1091581815625596.

    Article  CAS  PubMed  Google Scholar 

  79. Krausz LT, Bianchini R, Ronchetti S, Fettucciari K, Nocentini G, Riccardi C. GITR-GITRL system, a novel player in shock and inflammation. Sci World J. 2007;7:533–66. https://doi.org/10.1100/tsw.2007.106.

    Article  CAS  Google Scholar 

  80. Erlebacher A, Vencato D, Price KA, Zhang D, Glimcher LH. Constraints in antigen presentation severely restrict T cell recognition of the allogeneic fetus. J Clin Investig. 2007;117(5):1399–411. https://doi.org/10.1172/JCI28214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Habicht A, Dada S, Jurewicz M, Fife BT, Yagita H, Azuma M, et al. A link between PDL1 and T regulatory cells in fetomaternal tolerance. J Immunol. 2007;179(8):5211–9. https://doi.org/10.4049/jimmunol.179.8.5211.

    Article  CAS  PubMed  Google Scholar 

  82. Erlebacher A. Immunology of the maternal-fetal Interface. Annu Rev Immunol. 2013;31(1):387–411. https://doi.org/10.1146/annurev-immunol-032712-100003.

    Article  CAS  PubMed  Google Scholar 

  83. Rowe JH, Ertelt JM, Xin L, Way SS. Pregnancy imprints regulatory memory that sustains anergy to fetal antigen. Nature. 2012;490(7418):102–6. https://doi.org/10.1038/nature11462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Samstein RM, Josefowicz SZ, Arvey A, Treuting PM, Rudensky AY. Extrathymic generation of regulatory T cells in placental mammals mitigates maternal-fetal conflict. Cell. 2012;150(1):29–38. https://doi.org/10.1016/j.cell.2012.05.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cheng S-B, Sharma S. Interleukin-10: a pleiotropic regulator in pregnancy. Am J Reprod Immunol. 2015;73(6):487–500. https://doi.org/10.1111/aji.12329.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danuta J. Herzyk.

Additional information

Guest Editors: Mohammad Tabrizifard and Vaishnavi Ganti

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herzyk, D.J., Haggerty, H.G. Cancer Immunotherapy: Factors Important for the Evaluation of Safety in Nonclinical Studies. AAPS J 20, 28 (2018). https://doi.org/10.1208/s12248-017-0184-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-017-0184-3

KEY WORDS

Navigation