Skip to main content

Advertisement

Log in

Nanotechnology as a Delivery Tool for Precision Cancer Therapies

  • Review Article
  • Theme: Precision Medicine: Implications for the Pharmaceutical Sciences
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Genomic analyses from patients with cancer have improved the understanding of the genetic elements that drive the disease, provided new targets for treating this relentless disease, and offered criteria for stratifying patient populations that will benefit most from treatments. In the last decade, several new targeted therapies have been approved by the FDA based on these omics findings, leading to significantly improved survival and quality of life for select patient populations. However, many of these precision medicines, e.g., nucleic acid-based therapies and antibodies, suffer from poor plasma stability, suboptimal pharmacokinetic properties, and immunological toxicities that prohibit their clinical translation. Nanotechnology is being explored as a delivery platform that can enable the successful delivery of these precision medicine treatments without these limitations. These precision nanomedicines are able to protect the cargo from degradation or premature/burst release prior to accumulation at the tumor site and improve the selectivity to cancer cells by incorporating ligands that can target receptors overexpressed on the cancer cell surface. Here, we review the development of several precision nanomedicines based on genomic analysis of clinical samples, actively targeted nanoparticle delivery systems in the clinic, and the pathophysiological barriers of the tumor microenvironment. Successful translation of these precision nanomedicine initiatives will require an effective collaboration between basic and clinical investigators to match the right patient with the right therapies and to deliver them at therapeutic concentrations which will improve overall treatment responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang Y, Schmid-Bindert G, Zhou C. Erlotinib in the treatment of advanced non-small cell lung cancer: an update for clinicians. Ther Adv Med Oncol. 2012;4(1):19–29.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wang JP, CY W, Yeh YC, Shyr YM, YY W, Kuo CY, et al. Erlotinib is effective in pancreatic cancer with epidermal growth factor receptor mutations: a randomized, open-label, prospective trial. Oncotarget. 2015;6(20):18162–73.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Abramson R. Overview of targeted therapies for cancer. 2017 [updated August 1, 2017. Available from: https://www.mycancergenome.org/content/molecular-medicine/overview-of-targeted-therapies-for-cancer/.

  4. Maher M. Current and emerging treatment regimens for HER2-positive breast cancer. P T. 2014;39(3):206–12.

    PubMed  PubMed Central  Google Scholar 

  5. Kim ST, Lim DH, Jang KT, Lim T, Lee J, Choi YL, et al. Impact of KRAS mutations on clinical outcomes in pancreatic cancer patients treated with first-line gemcitabine-based chemotherapy. Mol Cancer Ther. 2011;10(10):1993–9.

    Article  CAS  PubMed  Google Scholar 

  6. Karapetis CS, Khambata-Ford S, Jonker DJ, O’Callaghan CJ, Tu D, Tebbutt NC, et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med. 2008;359(17):1757–65.

    Article  CAS  PubMed  Google Scholar 

  7. Di Nicolantonio F, Martini M, Molinari F, Sartore-Bianchi A, Arena S, Saletti P, et al. Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol. 2008;26(35):5705–12.

    Article  PubMed  Google Scholar 

  8. Walther Z, Sklar J. Molecular tumor profiling for prediction of response to anticancer therapies. Cancer J. 2011;17(2):71–9.

    Article  CAS  PubMed  Google Scholar 

  9. Surrey LF, Luo M, Chang F, Li MM. The genomic era of clinical oncology: integrated genomic analysis for precision cancer care. Cytogenet Genome Res. 2016;150(3–4):162–75.

    Article  PubMed  Google Scholar 

  10. Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutselakis H, et al. COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res. 2015;43(D1):D805–11.

  11. Greaves M, Maley CC. Clonal evolution in cancer. Nature. 2012;481(7381):306–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Makohon-Moore AP, Zhang M, Reiter JG, Bozic I, Allen B, Kundu D, et al. Limited heterogeneity of known driver gene mutations among the metastases of individual patients with pancreatic cancer. Nat Genet. 2017;49(3):358–66.

    Article  CAS  PubMed  Google Scholar 

  13. Hyman DM, Taylor BS, Baselga J. Implementing genome-driven oncology. Cell. 2017;168(4):584–99.

    Article  CAS  PubMed  Google Scholar 

  14. Bower H, Bjorkholm M, Dickman PW, Hoglund M, Lambert PC, Andersson TM. Life expectancy of patients with chronic myeloid leukemia approaches the life expectancy of the general population. J Clin Oncol. 2016;34(24):2851–7.

    Article  CAS  PubMed  Google Scholar 

  15. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364(26):2507–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tejpar S, Bertagnolli M, Bosman F, Lenz HJ, Garraway L, Waldman F, et al. Prognostic and predictive biomarkers in resected colon cancer: current status and future perspectives for integrating genomics into biomarker discovery. Oncologist. 2010;15(4):390–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kopetz S, Desai J, Chan E, Hecht JR, O’Dwyer PJ, Maru D, et al. Phase II pilot study of vemurafenib in patients with metastatic BRAF-mutated colorectal cancer. J Clin Oncol. 2015;33(34):4032–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Falchook GS, Long GV, Kurzrock R, Kim KB, Arkenau TH, Brown MP, et al. Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: a phase 1 dose-escalation trial. Lancet. 2012;379(9829):1893–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Corcoran RB, Ebi H, Turke AB, Coffee EM, Nishino M, Cogdill AP, et al. EGFR-mediated reactivation of MAPK signaling contributes to insensitivity of <em>BRAF</em>-mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer Discov. 2012;2:227–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Prahallad A, Sun C, Huang S, Di Nicolantonio F, Salazar R, Zecchin D, et al. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature. 2012;483(7388):100–3.

    Article  CAS  PubMed  Google Scholar 

  21. Cunanan KM, Gonen M, Shen R, Hyman DM, Riely GJ, Begg CB, et al. Basket trials in oncology: a trade-off between complexity and efficiency. J Clin Oncol. 2017;35(3):271–3.

    Article  PubMed  Google Scholar 

  22. Hyman DM, Laetsch TW, Kummar S, DuBois SG, Farago AF, Pappo AS, et al. The efficacy of larotrectinib (LOXO-101), a selective tropomyosin receptor kinase (TRK) inhibitor, in adult and pediatric TRK fusion cancers. J Clin Oncol. 2017;35(18_suppl):LBA2501-LBA.

    Article  Google Scholar 

  23. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 Blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, et al. Mismatch-repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357:409–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kato S, Goodman AM, Walavalkar V, Barkauskas DA, Sharabi A, Kurzrock R. Hyper-progressors after immunotherapy: analysis of genomic alterations associated with accelerated growth rate. Clin Cancer Res. 2017;23:4242–50.

    Article  CAS  PubMed  Google Scholar 

  26. Shin DS, Zaretsky JM, Escuin-Ordinas H, Garcia-Diaz A, Hu-Lieskovan S, Kalbasi A, et al. Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov. 2017;7(2):188–201.

    Article  CAS  PubMed  Google Scholar 

  27. van de Water FM, Boerman OC, Wouterse AC, Peters JG, Russel FG, Masereeuw R. Intravenously administered short interfering RNA accumulates in the kidney and selectively suppresses gene function in renal proximal tubules. Drug Metab Dispos. 2006;34(8):1393–7.

    Article  PubMed  Google Scholar 

  28. Gonzalez-Angulo AM, Meric-Bernstam F, Chawla S, Falchook G, Hong D, Akcakanat A, et al. Weekly nab-Rapamycin in patients with advanced nonhematologic malignancies: final results of a phase I trial. Clin Cancer Res. 2013;19(19):5474–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tolcher AW, Rodrigueza WV, Rasco DW, Patnaik A, Papadopoulos KP, Amaya A, et al. A phase 1 study of the BCL2-targeted deoxyribonucleic acid inhibitor (DNAi) PNT2258 in patients with advanced solid tumors. Cancer Chemother Pharmacol. 2014;73(2):363–71.

    Article  CAS  PubMed  Google Scholar 

  30. Ebrahim AS, Kandouz M, Liddane A, Sabbagh H, Hou Y, Li C, et al. PNT2258, a novel deoxyribonucleic acid inhibitor, induces cell cycle arrest and apoptosis via a distinct mechanism of action: a new class of drug for non-Hodgkin’s lymphoma. Oncotarget. 2016;7(27):42374–84.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chawla SP, Chua VS, Fernandez L, Quon D, Saralou A, Blackwelder WC, et al. Phase I/II and phase II studies of targeted gene delivery in vivo: intravenous Rexin-G for chemotherapy-resistant sarcoma and osteosarcoma. Mol Ther. 2009;17(9):1651–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Galanis E, Carlson SK, Foster NR, Lowe V, Quevedo F, McWilliams RR, et al. Phase I trial of a pathotropic retroviral vector expressing a cytocidal cyclin G1 construct (Rexin-G) in patients with advanced pancreatic cancer. Mol Ther. 2008;16(5):979–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Barranco C, Usmani SZ, van Rhee F, Hamadani M, Thompson J, Taylor CA, et al. Phase 1b/2a open-label, multiple-dose, dose-escalation study to evaluate the safety and tolerability of intravenous infusion of SNS01-T in patients with relapsed or refractory multiple myeloma, mantle cell lymphoma, or diffuse large B cell lymphoma. Blood. 2013;122(21):1950.

    Google Scholar 

  34. Heinzlmeir S, Kudlinzki D, Sreeramulu S, Klaeger S, Gande SL, Linhard V, et al. Chemical proteomics and structural biology define EPHA2 inhibition by clinical kinase drugs. ACS Chem Biol. 2016;11(12):3400–11.

    Article  CAS  PubMed  Google Scholar 

  35. Lu C, Stewart DJ, Lee JJ, Ji L, Ramesh R, Jayachandran G, et al. Phase I clinical trial of systemically administered TUSC2(FUS1)-nanoparticles mediating functional gene transfer in humans. PLoS One. 2012;7(4):e34833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Beg MS, Brenner AJ, Sachdev J, Borad M, Kang YK, Stoudemire J, et al. Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Investig New Drugs. 2017;35(2):180–8.

    Article  CAS  Google Scholar 

  37. Golan T, Khvalevsky EZ, Hubert A, Gabai RM, Hen N, Segal A, et al. RNAi therapy targeting KRAS in combination with chemotherapy for locally advanced pancreatic cancer patients. Oncotarget. 2015;6(27):24560–70.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Schultheis B, Strumberg D, Kuhlmann J, Wolf M, Link K, Seufferlein T, et al. A phase Ib/IIa study of combination therapy with gemcitabine and Atu027 in patients with locally advanced or metastatic pancreatic adenocarcinoma. J Clin Oncol. 2016;34(4_suppl):385.

    Article  Google Scholar 

  39. Schultheis B, Strumberg D, Santel A, Vank C, Gebhardt F, Keil O, et al. First-in-human phase I study of the liposomal RNA interference therapeutic Atu027 in patients with advanced solid tumors. J Clin Oncol. 2014;32(36):4141–8.

    Article  CAS  PubMed  Google Scholar 

  40. Demeure MJ, Armaghany T, Ejadi S, Ramanathan RK, Elfiky A, Strosberg JR, et al. A phase I/II study of TKM-080301, a PLK1-targeted RNAi in patients with adrenocortical cancer (ACC). J Clin Oncol. 2016;34(15_suppl):2547.

    Google Scholar 

  41. Cervantes A, Alsina M, Tabernero J, Infante JR, LoRusso P, Shapiro G, et al. Phase I dose-escalation study of ALN-VSP02, a novel RNAi therapeutic for solid tumors with liver involvement. J Clin Oncol. 2011;29(15_suppl):3025.

    Article  Google Scholar 

  42. Tabernero J, Shapiro GI, LoRusso PM, Cervantes A, Schwartz GK, Weiss GJ, et al. First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. Cancer Discov. 2013;3(4):406–17.

    Article  CAS  PubMed  Google Scholar 

  43. Wang J, Lu Z, Wientjes MG, Au JL. Delivery of siRNA therapeutics: barriers and carriers. AAPS J. 2010;12(4):492–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Daka A, Peer D. RNAi-based nanomedicines for targeted personalized therapy. Adv Drug Deliv Rev. 2012;64(13):1508–21.

    Article  CAS  PubMed  Google Scholar 

  45. Dobrovolskaia MA, McNeil SE. Strategy for selecting nanotechnology carriers to overcome immunological and hematological toxicities challenging clinical translation of nucleic acid-based therapeutics. Expert Opin Drug Deliv. 2015;12(7):1163–75.

    Article  CAS  PubMed  Google Scholar 

  46. Zuckerman JE, Davis ME. Clinical experiences with systemically administered siRNA-based therapeutics in cancer. Nat Rev Drug Discov. 2015;14(12):843–56.

    Article  CAS  PubMed  Google Scholar 

  47. Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A, Alabi CA, et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature. 2010;464(7291):1067–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zuckerman JE, Gritli I, Tolcher A, Heidel JD, Lim D, Morgan R, et al. Correlating animal and human phase Ia/Ib clinical data with CALAA-01, a targeted, polymer-based nanoparticle containing siRNA. Proc Natl Acad Sci U S A. 2014;111(31):11449–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Westin JR, Maris MB, Al-Katib AM, Lakhani NJ, Patel PA, Harb WA, et al. A phase 2 study of PNT2258 in patients with relapsed or refractory (r/r) diffuse large b-cell lymphoma (DLBCL): an initial report from the Wolverine study. J Clin Oncol. 2016;34(15_suppl):TPS7577-TPS.

    Google Scholar 

  50. Camp ER, Wang C, Little EC, Watson PM, Pirollo KF, Rait A, et al. Transferrin receptor targeting nanomedicine delivering wild-type p53 gene sensitizes pancreatic cancer to gemcitabine therapy. Cancer Gene Ther. 2013;20(4):222–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Senzer N, Nemunaitis J, Nemunaitis D, Bedell C, Edelman G, Barve M, et al. Phase I study of a systemically delivered p53 nanoparticle in advanced solid tumors. Mol Ther. 2013;21(5):1096–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Thaker PH, Brady WE, Bradley WH, Anwer K, Alvarez RD. Phase I study of intraperitoneal IL-12 plasmid formulated with PEG-PEI-cholesterol lipopolymer administered in combination with pegylated liposomal doxorubicin in recurrent or persistent epithelial ovarian, Fallopian tube, or primary peritoneal cancer patients: an NRG/GOG study. J Clin Oncol. 2015;33(15_suppl):5541.

    Google Scholar 

  53. Song M. The CRISPR/Cas9 system: their delivery, in vivo and ex vivo applications and clinical development by startups. Biotechnol Prog. 2017;33:1035–45.

    Article  CAS  PubMed  Google Scholar 

  54. Sun W, Ji W, Hall JM, Hu Q, Wang C, Beisel CL, et al. Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Angew Chem Int Ed Engl. 2015;54(41):12029–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dobrovolskaia MA, McNeil SE. Immunological and hematological toxicities challenging clinical translation of nucleic acid-based therapeutics. Expert Opin Biol Ther. 2015;15(7):1023–48.

    Article  CAS  PubMed  Google Scholar 

  56. Anselmo AC, Mitragotri S. Nanoparticles in the clinic. Bioengineering & Translational. Medicine. 2016;1(1):10–29.

    Google Scholar 

  57. Mamot C, Ritschard R, Wicki A, Stehle G, Dieterle T, Bubendorf L, et al. Tolerability, safety, pharmacokinetics, and efficacy of doxorubicin-loaded anti-EGFR immunoliposomes in advanced solid tumours: a phase 1 dose-escalation study. Lancet Oncol. 2012;13(12):1234–41.

    Article  CAS  PubMed  Google Scholar 

  58. van Zandwijk N, Pavlakis N, Kao S, Clarke S, Lee A, Brahmbhatt H, et al. P1.02MesomiR 1: a phase I study of TargomiRs in patients with refractory malignant pleural mesothelioma (MPM) and lung cancer (NSCLC). Ann Oncol. 2015;26(suppl_2):ii16-ii.

    Article  Google Scholar 

  59. Miller K, Cortes J, Hurvitz SA, Krop IE, Tripathy D, Verma S, et al. HERMIONE: a randomized phase 2 trial of MM-302 plus trastuzumab versus chemotherapy of physician’s choice plus trastuzumab in patients with previously treated, anthracycline-naive, HER2-positive, locally advanced/metastatic breast cancer. BMC Cancer. 2016;16:352.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Von Hoff DD, Mita MM, Ramanathan RK, Weiss GJ, Mita AC, LoRusso PM, et al. Phase I study of PSMA-targeted docetaxel-containing nanoparticle BIND-014 in patients with advanced solid tumors. Clin Cancer Res. 2016;22(13):3157–63.

    Article  Google Scholar 

  61. Pirollo KF, Nemunaitis J, Leung PK, Nunan R, Adams J, Chang EH. Safety and efficacy in advanced solid tumors of a targeted nanocomplex carrying the p53 gene used in combination with docetaxel: a phase 1b study. Mol Ther. 2016;24(9):1697–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Siefker-Radtke A, Zhang XQ, Guo CC, Shen Y, Pirollo KF, Sabir S, et al. A phase l study of a tumor-targeted systemic nanodelivery system, SGT-94, in genitourinary cancers. Mol Ther. 2016;24(8):1484–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Llop E, Ferrer-Batalle M, Barrabes S, Guerrero PE, Ramirez M, Saldova R, et al. Improvement of prostate cancer diagnosis by detecting PSA glycosylation-specific changes. Theranostics. 2016;6(8):1190–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hrkach J, Von Hoff D, Mukkaram Ali M, Andrianova E, Auer J, Campbell T, et al. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci Transl Med. 2012;4(128):128ra39.

    Article  PubMed  Google Scholar 

  65. Autio KA, Garcia JA, Alva AS, Hart LL, Milowsky MI, Posadas EM, et al. A phase 2 study of BIND-014 (PSMA-targeted docetaxel nanoparticle) administered to patients with chemotherapy-naïve metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol. 2016;34(2_suppl):233.

    Article  Google Scholar 

  66. Phillips E, Penate-Medina O, Zanzonico PB, Carvajal RD, Mohan P, Ye Y, et al. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci Transl Med. 2014;6(260):260ra149.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wilder RL. Integrin alpha V beta 3 as a target for treatment of rheumatoid arthritis and related rheumatic diseases. Ann Rheum Dis. 2002;61(Suppl 2):ii96–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Srinivasarao M, Galliford CV, Low PS. Principles in the design of ligand-targeted cancer therapeutics and imaging agents. Nat Rev Drug Discov. 2015;14(3):203–19.

    Article  CAS  PubMed  Google Scholar 

  69. Hare JI, Lammers T, Ashford MB, Puri S, Storm G, Barry ST. Challenges and strategies in anti-cancer nanomedicine development: an industry perspective. Adv Drug Deliv Rev. 2017;108:25–38.

    Article  CAS  PubMed  Google Scholar 

  70. Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2017;17(1):20–37.

    Article  CAS  PubMed  Google Scholar 

  71. Adiseshaiah PP, Crist RM, Hook SS, McNeil SE. Nanomedicine strategies to overcome the pathophysiological barriers of pancreatic cancer. Nat Rev Clin Oncol. 2016;13(12):750–65.

    Article  CAS  PubMed  Google Scholar 

  72. Punt CJ, Koopman M, Vermeulen L. From tumour heterogeneity to advances in precision treatment of colorectal cancer. Nat Rev Clin Oncol. 2017;14(4):235–46.

    Article  CAS  PubMed  Google Scholar 

  73. Miao L, Huang L. Exploring the tumor microenvironment with nanoparticles. Cancer Treat Res. 2015;166:193–226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Stylianopoulos T, Jain RK. Design considerations for nanotherapeutics in oncology. Nanomedicine. 2015;11(8):1893–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Naxerova K, Jain RK. Using tumour phylogenetics to identify the roots of metastasis in humans. Nat Rev Clin Oncol. 2015;12(5):258–72.

    Article  CAS  PubMed  Google Scholar 

  76. Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol. 2011;6(12):815–23.

    Article  CAS  PubMed  Google Scholar 

  77. Harrington KJ, Mohammadtaghi S, Uster PS, Glass D, Peters AM, Vile RG, et al. Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes. Clin Cancer Res. 2001;7(2):243–54.

    CAS  PubMed  Google Scholar 

  78. Northfelt DW, Dezube BJ, Thommes JA, Miller BJ, Fischl MA, Friedman-Kien A, et al. Pegylated-liposomal doxorubicin versus doxorubicin, bleomycin, and vincristine in the treatment of AIDS-related Kaposi’s sarcoma: results of a randomized phase III clinical trial. J Clin Oncol. 1998;16(7):2445–51.

    Article  CAS  PubMed  Google Scholar 

  79. Gordon AN, Fleagle JT, Guthrie D, Parkin DE, Gore ME, Lacave AJ. Recurrent epithelial ovarian carcinoma: a randomized phase III study of pegylated liposomal doxorubicin versus topotecan. J Clin Oncol. 2001;19(14):3312–22.

    Article  CAS  PubMed  Google Scholar 

  80. O’Brien ME, Wigler N, Inbar M, Rosso R, Grischke E, Santoro A, et al. Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX/Doxil) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann Oncol. 2004;15(3):440–9.

    Article  PubMed  Google Scholar 

  81. Adiseshaiah PP, Hall JB, McNeil SE. Nanomaterial standards for efficacy and toxicity assessment. Wiley interdisciplinary reviews Nanomedicine and. NanoBiotechnology. 2010;2(1):99–112.

    CAS  Google Scholar 

  82. Sykes EA, Dai Q, Sarsons CD, Chen J, Rocheleau JV, Hwang DM, et al. Tailoring nanoparticle designs to target cancer based on tumor pathophysiology. Proc Natl Acad Sci U S A. 2016;113(9):E1142–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285(21):1182–6.

    Article  CAS  PubMed  Google Scholar 

  84. Baxter LT, Jain RK. Transport of fluid and macromolecules in tumors. II. Role of heterogeneous perfusion and lymphatics. Microvasc Res. 1990;40(2):246–63.

    Article  CAS  PubMed  Google Scholar 

  85. Jain RK, Stylianopoulos T. Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol. 2010;7(11):653–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Willett CG, Boucher Y, di Tomaso E, Duda DG, Munn LL, Tong RT, et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med. 2004;10(2):145–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Batchelor TT, Sorensen AG, di Tomaso E, Zhang WT, Duda DG, Cohen KS, et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell. 2007;11(1):83–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mancuso MR, Davis R, Norberg SM, O’Brien S, Sennino B, Nakahara T, et al. Rapid vascular regrowth in tumors after reversal of VEGF inhibition. J Clin Invest. 2006;116(10):2610–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chauhan VP, Stylianopoulos T, Martin JD, Popovic Z, Chen O, Kamoun WS, et al. Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat Nanotechnol. 2012;7(6):383–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhang B, Shi W, Jiang T, Wang L, Mei H, Lu H, et al. Optimization of the tumor microenvironment and nanomedicine properties simultaneously to improve tumor therapy. Oncotarget. 2016;7(38):62607–18.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Diop-Frimpong B, Chauhan VP, Krane S, Boucher Y, Jain RK. Losartan inhibits collagen I synthesis and improves the distribution and efficacy of nanotherapeutics in tumors. Proc Natl Acad Sci U S A. 2011;108(7):2909–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wong KM, Horton KJ, Coveler AL, Hingorani SR, Harris WP. Targeting the tumor stroma: the biology and clinical development of pegylated recombinant human hyaluronidase (PEGPH20). Curr Oncol Rep. 2017;19(7):47.

    Article  PubMed  Google Scholar 

  93. De Jesus-Acosta A, O’Dwyer PJ, Ramanathan RK, Von Hoff DD, Maitra A, Rasheed Z, et al. A phase II study of vismodegib, a hedgehog (Hh) pathway inhibitor, combined with gemcitabine and nab-paclitaxel (nab-P) in patients (pts) with untreated metastatic pancreatic ductal adenocarcinoma (PDA). J Clin Oncol. 2014;32(3):257.

Download references

Funding

This project has been funded in whole or in part with federal funds from the National Cancer Institute, National Institutes of Health, under Contract No. HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the US government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavan P. Adiseshaiah.

Additional information

Guest Editors: Marilyn N. Martinez and Adel Karara

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, B., Crist, R.M. & Adiseshaiah, P.P. Nanotechnology as a Delivery Tool for Precision Cancer Therapies. AAPS J 19, 1632–1642 (2017). https://doi.org/10.1208/s12248-017-0152-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-017-0152-y

KEY WORDS

Navigation