Skip to main content

Advertisement

Log in

Breaking Bad: the Structure and Function of the Blood-Brain Barrier in Epilepsy

  • Review Article
  • Theme: CNS Barriers in Health and Disease
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Epilepsy is a neurological disease with variable etiology and clinical manifestation, affecting more than 50 million people worldwide. Although the ultimate precipitators of seizures are neurons, it is becoming evident that epileptic activity is associated with changes in the function of other cell types, including those consisting the blood-brain barrier (BBB) and regulating its permeability. The interrelationships between impaired BBB function and epilepsy are complex, as BBB dysfunction may both lead to seizures and be induced by epileptic activity. In this article, we review alterations in key BBB properties that have been found in patients with epilepsy and in animal models of the disease. We highlight emerging biomarkers for individualized treatment, implications for pharmacotherapy, and potential BBB-related targets for drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fisher RS, van Emde BW, Blume W, Elger C, Genton P, Lee P, et al. Epileptic seizures and epilepsy: definitions proposed by the International League Against epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia. 2005;46:470–2.

    Article  PubMed  Google Scholar 

  2. WHO. Epilepsy. Fact sheet. http://www.who.int/mediacentre/factsheets/fs999/en/. Updated February 2016. Accessed Dec 2016.

  3. Kwan P, Schachter SC, Brodie MJ. Drug-resistant epilepsy. N Engl J Med. 2011;365:919–26.

    Article  CAS  PubMed  Google Scholar 

  4. Kwan P, Arzimanoglou A, Berg AT, Brodie MJ, Allen Hauser W, Mathern G, et al. Definition of drug resistant epilepsy: consensus proposal by the ad hoc task force of the ILAE commission on therapeutic strategies. Epilepsia. 2010;51:1069–77.

    Article  CAS  PubMed  Google Scholar 

  5. Varvel NH, Jiang J, Dingledine R. Candidate drug targets for prevention or modification of epilepsy. Annu Rev Pharmacol Toxicol. 2015;55:229–47.

    Article  CAS  PubMed  Google Scholar 

  6. Franco V, French JA, Perucca E. Challenges in the clinical development of new antiepileptic drugs. Pharmacol Res. 2016;103:95–104.

    Article  PubMed  Google Scholar 

  7. Friedman A, Heinemann U. Role of blood-brain barrier dysfunction in epileptogenesis. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV, editors. Jasper’s basic mechanisms of the epilepsies [Internet]. 4th ed. Bethesda: National Center for Biotechnology Information (US); 2012.

    Google Scholar 

  8. Marchi N, Granata T, Ghosh C, Janigro D. Blood-brain barrier dysfunction and epilepsy: pathophysiologic role and therapeutic approaches. Epilepsia. 2012;53:1877–86.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pitkänen A, Löscher W, Vezzani A, Becker AJ, Simonato M, Lukasiuk K, et al. Advances in the development of biomarkers for epilepsy. Lancet Neurol. 2016;15:843–56.

    Article  PubMed  CAS  Google Scholar 

  10. van Vliet EA, Aronica E, Gorter JA. Blood-brain barrier dysfunction, seizures and epilepsy. Semin Cell Dev Biol. 2015;38:26–34.

    Article  PubMed  CAS  Google Scholar 

  11. Vezzani A, French J, Bartfai T, Baram TZ. The role of inflammation in epilepsy. Nat Rev Neurol. 2011;7:31–40.

    Article  CAS  PubMed  Google Scholar 

  12. Jasper HH. Physiopathological mechanisms of post-traumatic epilepsy. Epilepsia. 1970;11:73–80.

    Article  CAS  PubMed  Google Scholar 

  13. Nitsch C, Klatzo I. Regional patterns of blood-brain barrier breakdown during epileptiform seizures induced by various convulsive agents. J Neurol Sci. 1983;59:305–22.

    Article  CAS  PubMed  Google Scholar 

  14. Friedman A. Blood-brain barrier dysfunction, status epilepticus, seizures, and epilepsy: a puzzle of a chicken and egg? Epilepsia. 2011;52:19–20.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fieschi C, Lenzi GL, Zanette E, Orzi F, Passero S. Effects on EEG of the osmotic opening of the blood-brain barrier in rats. Life Sci. 1980;27:239–43.

    Article  CAS  PubMed  Google Scholar 

  16. Marchi N, Angelov L, Masaryk T, Fazio V, Granata T, Hernandez N, et al. Seizure-promoting effect of blood-brain barrier disruption. Epilepsia. 2007;48:732–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sugano K, Kansy M, Artursson P, Avdeef A, Bendels S, Di L, et al. Coexistence of passive and carrier-mediated processes in drug transport. Nat Rev Drug Discov. 2010;9:597–614.

    Article  CAS  PubMed  Google Scholar 

  18. Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of the blood-brain barrier. Nat Med. 2013;19:1584–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lamas M, González-Mariscal L, Gutiérrez R. Presence of claudins mRNA in the brain. Selective modulation of expression by kindling epilepsy. Brain Res Mol Brain Res. 2002;104:250–4.

    Article  CAS  PubMed  Google Scholar 

  20. Morin-Brureau M, Lebrun A, Rousset MC, Fagni L, Bockaert J, de Bock F, et al. Epileptiform activity induces vascular remodeling and zonula occludens 1 downregulation in organotypic hippocampal cultures: role of VEGF signaling pathways. J Neurosci. 2011;31:10677–88.

    Article  CAS  PubMed  Google Scholar 

  21. Rigau V, Morin M, Rousset MC, de Bock F, Lebrun A, Coubes P, et al. Angiogenesis is associated with blood-brain barrier permeability in temporal lobe epilepsy. Brain. 2007;130:1942–56.

    Article  PubMed  Google Scholar 

  22. Patsalos P. Antiepileptic drug interactions: a clinical guide. 3rd ed. London: Springer International Publishing; 2016.

    Book  Google Scholar 

  23. Zhang C, Kwan P, Zuo Z, Baum L. The transport of antiepileptic drugs by P-glycoprotein. Adv Drug Deliv Rev. 2012;64:930–42.

    Article  CAS  PubMed  Google Scholar 

  24. Römermann K, Helmer R, Löscher W. The antiepileptic drug lamotrigine is a substrate of mouse and human breast cancer resistance protein (ABCG2). Neuropharmacology. 2015;93:7–14.

    Article  PubMed  CAS  Google Scholar 

  25. Adkison K, Shen D. Uptake of valproic acid into rat brain is mediated by a medium-chain fatty acid transporter. J Pharmacol Exp Ther. 1996;276:1189–200.

    CAS  PubMed  Google Scholar 

  26. Guo Y, Jiang L. Organic anion transporting polypeptide 2 transports valproic acid in rat brain microvascular endothelial cells. Neurol Res. 2016;38:634–9.

    Article  CAS  PubMed  Google Scholar 

  27. Gibbs JP, Adeyeye MC, Yang Z, Shen DD. Valproic acid uptake by bovine brain microvessel endothelial cells: role of active efflux transport. Epilepsy Res. 2004;58:53–66.

    Article  CAS  PubMed  Google Scholar 

  28. Eyal S, Lamb JG, Smith-Yockman M, Yagen B, Fibach E, Altschuler Y, et al. The antiepileptic and anticancer agent, valproic acid, induces P-glycoprotein in human tumour cell lines and in rat liver. Br J Pharmacol. 2006;149:250–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Terasaki T, Takakuwa S, Moritani S, Tsuji A. Transport of monocarboxylic acids at the blood-brain barrier: studies with monolayers of primary cultured bovine brain capillary endothelial cells. J Pharmacol Exp Ther. 1991;258:932–7.

    CAS  PubMed  Google Scholar 

  30. Gaston TE, Friedman D. Pharmacology of cannabinoids in the treatment of epilepsy. Epilepsy Behav. 2017; doi:10.1016/j.yebeh.2016.11.016.

  31. Ghersi-Egea J, Leninger-Muller B, Suleman G, Siest G, Minn A. Localisation of drug-metabolizing enzyme activities to blood-brain interfaces and circumventricular organs. J Neurochem. 1994;62:1089–96.

    Article  CAS  PubMed  Google Scholar 

  32. Ghersi-Egea JF, Minn A, Siest G. A new aspect of the protective functions of the blood-brain barrier: activities of four drug-metabolizing enzymes in isolated rat brain microvessels. Life Sci. 1988;42:2515–23.

    Article  CAS  PubMed  Google Scholar 

  33. Bauer B, Hartz AM, Lucking JR, Yang X, Pollack GM, Miller DS. Coordinated nuclear receptor regulation of the efflux transporter, Mrp2, and the phase-II metabolizing enzyme, GSTpi, at the blood-brain barrier. J Cereb Blood Flow Metab. 2008;28:1222–34.

    Article  CAS  PubMed  Google Scholar 

  34. Filbrandt CR, Wu Z, Zlokovic B, Opanashuk L, Gasiewicz TA. Presence and functional activity of the aryl hydrocarbon receptor in isolated murine cerebral vascular endothelial cells and astrocytes. Neurotoxicology. 2004;25:605–16.

    Article  CAS  PubMed  Google Scholar 

  35. Ghosh C, Gonzalez-Martinez J, Hossain M, Cucullo L, Fazio V, Janigro D, et al. Pattern of P450 expression at the human blood-brain barrier: roles of epileptic condition and laminar flow. Epilepsia. 2010;51:1408–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shawahna R, Uchida Y, Declèves X, Ohtsuki S, Yousif S, Dauchy S, et al. Transcriptomic and quantitative proteomic analysis of transporters and drug metabolizing enzymes in freshly isolated human brain microvessels. Mol Pharm. 2011;8:1332–41.

    Article  CAS  PubMed  Google Scholar 

  37. Dauchy S, Dutheil F, Weaver R, Chassoux F, Daumas-Duport C, Couraud P, et al. ABC transporters, cytochromes P450 and their main transcription factors: expression at the human blood-brain barrier. J Neurochem. 2008;107:1518–28.

    Article  CAS  PubMed  Google Scholar 

  38. Ghosh C, Hossain M, Puvenna V, Martinez-Gonzalez J, Alexopolous A, Janigro D, et al. Expression and functional relevance of UGT1A4 in a cohort of human drug-resistant epileptic brains. Epilepsia. 2013;54:1562–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Eyal S, Hsiao P, Unadkat JD. Drug interactions at the blood-brain barrier: fact or fantasy? Pharmacol Ther. 2009;123:80–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pearson TS, Akman C, Hinton VJ, Engelstad K, De Vivo DC. Phenotypic spectrum of glucose transporter type 1 deficiency syndrome (Glut1 DS). Curr Neurol Neurosci Rep. 2013;13:342.

    Article  PubMed  CAS  Google Scholar 

  41. Cornford EM, Hyman S, Cornford ME, Landaw EM, Delgado-Escueta AV. Interictal seizure resections show two configurations of endothelial Glut1 glucose transporter in the human blood-brain barrier. J Cereb Blood Flow Metab. 1998;18:26–42.

    Article  CAS  PubMed  Google Scholar 

  42. Lauritzen F, de Lanerolle NC, Lee TS, Spencer DD, Kim JH, Bergersen LH, et al. Monocarboxylate transporter 1 is deficient on microvessels in the human epileptogenic hippocampus. Neurobiol Dis. 2011;41:577–84.

    Article  CAS  PubMed  Google Scholar 

  43. Lauritzen F, Perez EL, Melillo ER, Roh JM, Zaveri HP, Lee TS, et al. Altered expression of brain monocarboxylate transporter 1 in models of temporal lobe epilepsy. Neurobiol Dis. 2012;45:165–76.

    Article  CAS  PubMed  Google Scholar 

  44. Guo Y, Jiang L. Drug transporters are altered in brain, liver and kidney of rats with chronic epilepsy induced by lithium-pilocarpine. Neurol Res. 2010;32:106–12.

    Article  CAS  PubMed  Google Scholar 

  45. Aronica E, Sisodiya SM, Gorter JA. Cerebral expression of drug transporters in epilepsy. Adv Drug Deliv Rev. 2012;64:919–29.

    Article  CAS  PubMed  Google Scholar 

  46. Dallas S, Miller D, Bendayan R. Multidrug resistance-associated proteins: expression and function in the central nervous system. Pharmacol Rev. 2006;58:140–61.

    Article  CAS  PubMed  Google Scholar 

  47. Feldmann M, Koepp M. ABC transporters and drug resistance in patients with epilepsy. Curr Pharm Des. 2016;22:5793–807.

    Article  CAS  PubMed  Google Scholar 

  48. Lazarowski A, Czornyj L. Potential role of multidrug resistant proteins in refractory epilepsy and antiepileptic drugs interactions. Drug Metabol Drug Interact. 2011;26:21–6.

    Article  CAS  PubMed  Google Scholar 

  49. Stępień KM, Tomaszewski M, Tomaszewska J, Czuczwar SJ. The multidrug transporter P-glycoprotein in pharmacoresistance to antiepileptic drugs. Pharmacol Rep. 2012;64:1011–9.

    Article  PubMed  Google Scholar 

  50. Tishler DM, Weinberg KI, Hinton DR, Barbaro N, Annett GM, Raffel C. MDR1 gene expression in brain of patients with medically intractable epilepsy. Epilepsia. 1995;36:1–6.

    Article  CAS  PubMed  Google Scholar 

  51. Dombrowski SM, Desai SY, Marroni M, Cucullo L, Goodrich K, Bingaman W, et al. Overexpression of multiple drug resistance genes in endothelial cells from patients with refractory epilepsy. Epilepsia. 2001;42:1501–6.

    Article  CAS  PubMed  Google Scholar 

  52. Sisodiya SM, Lin WR, Harding BN, Squier MV, Thom M. Drug resistance in epilepsy: expression of drug resistance proteins in common causes of refractory epilepsy. Brain. 2002;125:22–31.

    Article  CAS  PubMed  Google Scholar 

  53. Aronica E, Gorter JA, Ramkema M, Redeker S, Ozbas-Gerceker F, van Vliet EA, et al. Expression and cellular distribution of multidrug resistance-related proteins in the hippocampus of patients with mesial temporal lobe epilepsy. Epilepsia. 2004;45:441–51.

    Article  CAS  PubMed  Google Scholar 

  54. Aronica E, Gorter J, Jansen G, van Veelen C, van Rijen P, Leenstra S, et al. Expression and cellular distribution of multidrug transporter proteins in two major causes of medically intractable epilepsy: focal cortical dysplasia and glioneuronal tumors. Neuroscience. 2003;118:417–29.

    Article  CAS  PubMed  Google Scholar 

  55. Lazarowski A, Lubieniecki F, Camarero S, Pomata H, Bartuluchi M, Sevlever G, et al. Multidrug resistance proteins in tuberous sclerosis and refractory epilepsy. Pediatr Neurol. 2004;30:102–6.

    Article  PubMed  Google Scholar 

  56. Kubota H, Ishihara H, Langmann T, Schmitz G, Stieger B, Wieser H, et al. Distribution and functional activity of P-glycoprotein and multidrug resistance-associated proteins in human brain microvascular endothelial cells in hippocampal sclerosis. Epilepsy Res. 2006;68:213–28.

    Article  CAS  PubMed  Google Scholar 

  57. Brandt C, Bethmann K, Gastens A, Löscher W. The multidrug transporter hypothesis of drug resistance in epilepsy: proof-of-principle in a rat model of temporal lobe epilepsy. Neurobiol Dis. 2006;24:202–11.

    Article  CAS  PubMed  Google Scholar 

  58. Rizzi M, Caccia S, Guiso G, Richichi C, Gorter J, Aronica E, et al. Limbic seizures induce P-glycoprotein in rodent brain: functional implications for pharmacoresistance. J Neurosci. 2002;22:5833–9.

    CAS  PubMed  Google Scholar 

  59. Seegers U, Potschka H, Löscher W. Transient increase of P-glycoprotein expression in endothelium and parenchyma of limbic brain regions in the kainate model of temporal lobe epilepsy. Epilepsy Res. 2002;51:257–68.

    Article  CAS  PubMed  Google Scholar 

  60. Kwan P, Brodie MJ. Potential role of drug transporters in the pathogenesis of medically intractable epilepsy. Epilepsia. 2005;46:224–35.

    Article  CAS  PubMed  Google Scholar 

  61. Löscher W, Potschka H. Drug resistance in brain diseases and the role of drug efflux transporters. Nat Rev Neurosci. 2005;6:591–602.

    Article  PubMed  CAS  Google Scholar 

  62. Anderson G, Shen D. Where is the evidence that p-glycoprotein limits brain uptake of antiepileptic drug and contributes to drug resistance in epilepsy? Epilepsia. 2007;48:2372–4.

    Article  PubMed  Google Scholar 

  63. Baltes S, Fedrowitz M, Tortós CL, Potschka H, Löscher W. Valproic acid is not a substrate for P-glycoprotein or multidrug resistance proteins 1 and 2 in a number of in vitro and in vivo transport assays. J Pharmacol Exp Ther. 2007;320:331–43.

    Article  CAS  PubMed  Google Scholar 

  64. Baltes S, Gastens A, Fedrowitz M, Potschka H, Kaever V, Loscher W. Differences in the transport of the antiepileptic drugs phenytoin, levetiracetam and carbamazepine by human and mouse P-glycoprotein. Neuropharmacology. 2007;52:333–46.

    Article  CAS  PubMed  Google Scholar 

  65. Dickens D, Yusof SR, Abbott NJ, Weksler B, Romero IA, Couraud PO, et al. A multi-system approach assessing the interaction of anticonvulsants with P-gp. PLoS One. 2013;8:e64854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sills GJ, Kwan P, Butler E, de Lange EC, van den Berg DJ, Brodie MJ. P-glycoprotein-mediated efflux of antiepileptic drugs: preliminary studies in mdr1a knockout mice. Epilepsy Behav. 2002;3:427–32.

    Article  PubMed  Google Scholar 

  67. Zhang C, Zuo Z, Kwan P, Baum L. In vitro transport profile of carbamazepine, oxcarbazepine, eslicarbazepine acetate, and their active metabolites by human P-glycoprotein. Epilepsia. 2011;52:1894–904.

    Article  CAS  PubMed  Google Scholar 

  68. Takeuchi T, Yoshitomi S, Higuchi T, Ikemoto K, Niwa S, Ebihara T, et al. Establishment and characterization of the transformants stably-expressing MDR1 derived from various animal species in LLC-PK1. Pharm Res. 2006;23:1460–72.

    Article  CAS  PubMed  Google Scholar 

  69. Doran A, Obach R, Smith B, Hosea N, Becker S, Callegari E, et al. The impact of P-glycoprotein on the disposition of drugs targeted for indications of the central nervous system: evaluation using the MDR1A/1B knockout mouse model. Drug Metab Dispos. 2005;33:165–74.

    Article  CAS  PubMed  Google Scholar 

  70. Seneca N, Zoghbi SS, Shetty HU, Tuan E, Kannan P, Taku A, et al. Effects of ketoconazole on the biodistribution and metabolism of [11C]loperamide and [11C]N-desmethyl-loperamide in wild-type and P-gp knockout mice. Nucl Med Biol. 2010;37:335–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Morrissey KM, Wen CC, Johns SJ, Zhang L, Huang SM, Giacomini KM. The UCSF-FDA TransPortal: a public drug transporter database. Clin Pharmacol Ther. 2012;92:545–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. French JA. P-glycoprotein expression and antiepileptic drug resistance. Lancet Neurol. 2013;12:732–3.

    Article  CAS  PubMed  Google Scholar 

  73. Gidal BE. P-glycoprotein expression and pharmacoresistant epilepsy: cause or consequence? Epilepsy Curr. 2014;14:136–8.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Rogawski MA, Johnson MR. Intrinsic severity as a determinant of antiepileptic drug refractoriness. Epilepsy Curr. 2008;8:127–30.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Ikonomidou C. Matrix metalloproteinases and epileptogenesis. Mol Cell Pediatr. 2014;1:6.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Li S, Yu SX, Zhang CQ, Shu HF, Liu SY, An N, et al. Increased expression of matrix metalloproteinase 9 in cortical lesions from patients with focal cortical dysplasia type IIb and tuberous sclerosis complex. Brain Res. 2012;1453:46–55.

    Article  CAS  PubMed  Google Scholar 

  77. Konopka A, Grajkowska W, Ziemiańska K, Roszkowski M, Daszkiewicz P, Rysz A, et al. Matrix metalloproteinase-9 (MMP-9) in human intractable epilepsy caused by focal cortical dysplasia. Epilepsy Res. 2013;104:45–58.

    Article  CAS  PubMed  Google Scholar 

  78. Li YJ, Wang ZH, Zhang B, Zhe X, Wang MJ, Shi ST, et al. Disruption of the blood-brain barrier after generalized tonic-clonic seizures correlates with cerebrospinal fluid MMP-9 levels. J Neuroinflammation. 2013;10:80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Vafadari B, Salamian A, Kaczmarek L. MMP-9 in translation: from molecule to brain physiology, pathology, and therapy. J Neurochem. 2016;139(Suppl 2):91–114.

    Article  CAS  PubMed  Google Scholar 

  80. Milesi S, Boussadia B, Plaud C, Catteau M, Rousset MC, De Bock F, et al. Redistribution of PDGFRbeta cells and NG2DsRed pericytes at the cerebrovasculature after status epilepticus. Neurobiol Dis. 2014;71:151–8.

    Article  CAS  PubMed  Google Scholar 

  81. Gualtieri F, Curia G, Marinelli C, Biagini G. Increased perivascular laminin predicts damage to astrocytes in CA3 and piriform cortex following chemoconvulsive treatments. Neuroscience. 2012;218:278–94.

    Article  CAS  PubMed  Google Scholar 

  82. Sheen SH, Kim JE, Ryu HJ, Yang Y, Choi KC, Kang TC. Decrease in dystrophin expression prior to disruption of brain-blood barrier within the rat piriform cortex following status epilepticus. Brain Res. 2011;1369:173–83.

    Article  CAS  PubMed  Google Scholar 

  83. Ravizza T, Gagliardi B, Noé F, Boer K, Aronica E, Vezzani A. Innate and adaptive immunity during epileptogenesis and spontaneous seizures: evidence from experimental models and human temporal lobe epilepsy. Neurobiol Dis. 2008;29:142–60.

    Article  CAS  PubMed  Google Scholar 

  84. Vargas JR, Takahashi DK, Thomson KE, Wilcox KS. The expression of kainate receptor subunits in hippocampal astrocytes after experimentally induced status epilepticus. J Neuropathol Exp Neurol. 2013;72:919–32.

    Article  CAS  PubMed  Google Scholar 

  85. Breuer H, Meier M, Schneefeld S, Härtig W, Wittneben A, Märkel M, et al. Multimodality imaging of blood-brain barrier impairment during epileptogenesis. J Cereb Blood Flow Metab. 2016; doi:10.1177/0271678X16659672.

  86. Pardridge WM. Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab. 2012;32:1959–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Seiffert E, Dreier JP, Ivens S, Bechmann I, Tomkins O, Heinemann U, et al. Lasting blood-brain barrier disruption induces epileptic focus in the rat somatosensory cortex. J Neurosci. 2004;24:7829–36.

    Article  CAS  PubMed  Google Scholar 

  88. Petito CK, Schaefer JA, Plum F. Ultrastructural characteristics of the brain and blood-brain barrier in experimental seizures. Brain Res. 1977;127:251–67.

    Article  CAS  PubMed  Google Scholar 

  89. Lassmann H, Petsche U, Kitz K, Baran H, Sperk G, Seitelberger F, et al. The role of brain edema in epileptic brain damage induced by systemic kainic acid injection. Neuroscience. 1984;13:691–704.

    Article  CAS  PubMed  Google Scholar 

  90. Roch C, Leroy C, Nehlig A, Namer IJ. Magnetic resonance imaging in the study of the lithium-pilocarpine model of temporal lobe epilepsy in adult rats. Epilepsia. 2002;43:325–35.

    Article  PubMed  Google Scholar 

  91. van Vliet EA, da Costa AS, Redeker S, van Schaik R, Aronica E, Gorter JA. Blood-brain barrier leakage may lead to progression of temporal lobe epilepsy. Brain. 2007;130:521–34.

    Article  PubMed  Google Scholar 

  92. Ivens S, Kaufer D, Flores LP, Bechmann I, Zumsteg D, Tomkins O, et al. TGF-beta receptor-mediated albumin uptake into astrocytes is involved in neocortical epileptogenesis. Brain. 2007;130:535–47.

    Article  PubMed  Google Scholar 

  93. David Y, Cacheaux LP, Ivens S, Lapilover E, Heinemann U, Kaufer D, et al. Astrocytic dysfunction in epileptogenesis: consequence of altered potassium and glutamate homeostasis? J Neurosci. 2009;29:10588–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Friedman A, Kaufer D, Heinemann U. Blood-brain barrier breakdown-inducing astrocytic transformation: novel targets for the prevention of epilepsy. Epilepsy Res. 2009;85:142–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Shlosberg D, Benifla M, Kaufer D, Friedman A. Blood-brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat Rev Neurol. 2010;6:393–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Friedman A, Dingledine R. Molecular cascades that mediate the influence of inflammation on epilepsy. Epilepsia. 2011;52(Suppl 3):33–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Morin-Brureau M, Rigau V, Lerner-Natoli M. Why and how to target angiogenesis in focal epilepsies. Epilepsia. 2012;53(Suppl 6):64–8.

    Article  CAS  PubMed  Google Scholar 

  98. Fuso Nerini I, Cesca M, Bizzaro F, Giavazzi R. Combination therapy in cancer: effects of angiogenesis inhibitors on drug pharmacokinetics and pharmacodynamics. Chin J Cancer. 2016;35:61.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Devinsky O, Vezzani A, Najjar S, De Lanerolle NC, Rogawski MA. Glia and epilepsy: excitability and inflammation. Trends Neurosci. 2013;36:174–84.

    Article  CAS  PubMed  Google Scholar 

  100. Dey A, Kang X, Qiu J, Du Y, Jiang J. Anti-inflammatory small molecules to treat seizures and epilepsy: from bench to bedside. Trends Pharmacol Sci. 2016;37:463–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Fabene PF, Mora GN, Martinello M, Rossi B, Merigo F, Ottoboni L, et al. A role for leukocyte-endothelial adhesion mechanisms in epilepsy. Nat Med. 2008;14:1377–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hildebrandt M, Amann K, Schröder R, Pieper T, Kolodziejczyk D, Holthausen H, et al. White matter angiopathy is common in pediatric patients with intractable focal epilepsies. Epilepsia. 2008;49:804–15.

    Article  PubMed  Google Scholar 

  103. Zattoni M, Mura ML, Deprez F, Schwendener RA, Engelhardt B, Frei K, et al. Brain infiltration of leukocytes contributes to the pathophysiology of temporal lobe epilepsy. J Neurosci. 2011;31:4037–50.

    Article  CAS  PubMed  Google Scholar 

  104. Nighoghossian N, Wiart M, Cakmak S, Berthezène Y, Derex L, Cho TH, et al. Inflammatory response after ischemic stroke: a USPIO-enhanced MRI study in patients. Stroke. 2007;38:303–7.

    Article  PubMed  Google Scholar 

  105. Vellinga MM, Oude Engberink RD, Seewann A, Pouwels PJ, Wattjes MP, van der Pol SM, et al. Pluriformity of inflammation in multiple sclerosis shown by ultra-small iron oxide particle enhancement. Brain. 2008;131:800–7.

    Article  PubMed  Google Scholar 

  106. Marchi N, Fan Q, Ghosh C, Fazio V, Bertolini F, Betto G, et al. Antagonism of peripheral inflammation reduces the severity of status epilepticus. Neurobiol Dis. 2009;33:171–81.

    Article  CAS  PubMed  Google Scholar 

  107. Wong D, Dorovini-Zis K, Vincent SR. Cytokines, nitric oxide, and cGMP modulate the permeability of an in vitro model of the human blood-brain barrier. Exp Neurol. 2004;190:446–55.

    Article  CAS  PubMed  Google Scholar 

  108. Lombardo L, Pellitteri R, Balazy M, Cardile V. Induction of nuclear receptors and drug resistance in the brain microvascular endothelial cells treated with antiepileptic drugs. Curr Neurovasc Res. 2008;5:82–92.

    Article  CAS  PubMed  Google Scholar 

  109. Yang HW, Liu HY, Liu X, Zhang DM, Liu YC, Liu XD, et al. Increased P-glycoprotein function and level after long-term exposure of four antiepileptic drugs to rat brain microvascular endothelial cells in vitro. Neurosci Lett. 2008;434:299–303.

    Article  CAS  PubMed  Google Scholar 

  110. Wang Y, Zhou D, Wang B, Li H, Chai H, Zhou Q, et al. A kindling model of pharmacoresistant temporal lobe epilepsy in Sprague-Dawley rats induced by Coriaria lactone and its possible mechanism. Epilepsia. 2003;44:475–88.

    Article  PubMed  Google Scholar 

  111. Wang X, Cabrera RM, Li Y, Miller DS, Finnell R. Functional regulation of P-glycoprotein at the blood-brain barrier in proton-coupled folate transporter (PCFT) mutant mice. FASEB J. 2013;27:1167–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Volk B, Meyer RP, von Lintig F, Ibach B, Knoth R. Localization and characterization of cytochrome P450 in the brain. In vivo and in vitro investigations on phenytoin- and phenobarbital-inducible isoforms. Toxicol Lett. 1995;82-83:655–62.

    Article  CAS  PubMed  Google Scholar 

  113. Ahishali B, Kaya M, Orhan N, Arican N, Ekizoglu O, Elmas I, et al. Effects of levetiracetam on blood-brain barrier disturbances following hyperthermia-induced seizures in rats with cortical dysplasia. Life Sci. 2010;87:609–19.

    Article  CAS  PubMed  Google Scholar 

  114. Kaya M, Becker AJ, Gurses C. Blood-brain barrier, epileptogenesis, and treatment strategies in cortical dysplasia. Epilepsia. 2012;53(Suppl 6):31–6.

    Article  PubMed  Google Scholar 

  115. Seker FB, Yorulmaz H, Kaptan E, Caglayan B, Oztas B. Gestational treatment of folic acid attenuates blood-brain barrier leakage in pregnant- and prepubertal rats after pentylenetetrazole-induced seizure. Nutr Neurosci. 2016;19:55–62.

    Article  CAS  PubMed  Google Scholar 

  116. Hartman AL, Vining EP. Clinical aspects of the ketogenic diet. Epilepsia. 2007;48:31–42.

    Article  CAS  PubMed  Google Scholar 

  117. Leino RL, Gerhart DZ, Duelli R, Enerson BE, Drewes LR. Diet-induced ketosis increases monocarboxylate transporter (MCT1) levels in rat brain. Neurochem Int. 2001;38:519–27.

    Article  CAS  PubMed  Google Scholar 

  118. Daniel PM, Love ER, Moorhouse SR, Pratt OE. The transport of ketone bodies into the brain of the rat (in vivo). J Neurol Sci. 1977;34:1–13.

    Article  CAS  PubMed  Google Scholar 

  119. Fischer W, Praetor K, Metzner L, Neubert R, Brandsch M. Transport of valproate at intestinal epithelial (Caco-2) and brain endothelial (RBE4) cells: mechanism and substrate specificity. Eur J Pharm Biopharm. 2008;70:486–92.

    Article  CAS  PubMed  Google Scholar 

  120. Marchi N, Oby E, Batra A, Uva L, De Curtis M, Hernandez N, et al. In vivo and in vitro effects of pilocarpine: relevance to ictogenesis. Epilepsia. 2007;48:1934–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Neuwelt EA, Specht HD, Howieson J, Haines JE, Bennett MJ, Hill SA, et al. Osmotic blood-brain barrier modification: clinical documentation by enhanced CT scanning and/or radionuclide brain scanning. AJR Am J Roentgenol. 1983;141:829–35.

    Article  CAS  PubMed  Google Scholar 

  122. Wagner JA, Atkinson AJ. Measuring biomarker progress. Clin Pharmacol Ther. 2015;98:2–5.

    Article  CAS  PubMed  Google Scholar 

  123. Walker LE, Janigro D, Heinemann U, Riikonen R, Bernard C, Patel M. WONOEP appraisal: molecular and cellular biomarkers for epilepsy. Epilepsia. 2016;57:1354–62.

    Article  PubMed  Google Scholar 

  124. Mann A, Han H, Eyal S. Imaging transporters: transforming diagnostic and therapeutic development. Clin Pharmacol Ther. 2016;100:479–88.

    Article  CAS  PubMed  Google Scholar 

  125. Mann A, Semenenko I, Meir M, Eyal S. Molecular imaging of membrane transporters’ activity in cancer: a picture is worth a thousand tubes. AAPS J. 2015;17:788–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Tomkins O, Feintuch A, Benifla M, Cohen A, Friedman A, Shelef I. Blood-brain barrier breakdown following traumatic brain injury: a possible role in posttraumatic epilepsy. Cardiovasc Psychiatry Neurol. 2011;2011:765923.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Kim JH, Astary GW, Nobrega TL, Kantorovich S, Carney PR, Mareci TH, et al. Dynamic contrast-enhanced MRI of Gd-albumin delivery to the rat hippocampus in vivo by convection-enhanced delivery. J Neurosci Methods. 2012;209:62–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Marcon J, Gagliardi B, Balosso S, Maroso M, Noé F, Morin M, et al. Age-dependent vascular changes induced by status epilepticus in rat forebrain: implications for epileptogenesis. Neurobiol Dis. 2009;34:121–32.

    Article  CAS  PubMed  Google Scholar 

  129. Cattani AA, Allene C, Seifert V, Rosenow F, Henshall DC, Freiman TM. Involvement of microRNAs in epileptogenesis. Epilepsia. 2016;57:1015–26.

    Article  CAS  PubMed  Google Scholar 

  130. Feldmann M, Asselin MC, Liu J, Wang S, McMahon A, Anton-Rodriguez J, et al. P-glycoprotein expression and function in patients with temporal lobe epilepsy: a case-control study. Lancet Neurol. 2013;12:777–85.

    Article  CAS  PubMed  Google Scholar 

  131. Galovic M, Koepp M. Advances of molecular imaging in epilepsy. Curr Neurol Neurosci Rep. 2016;16:58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Shin JW, Chu K, Shin SA, Jung KH, Lee ST, Lee YS, et al. Clinical applications of simultaneous PET/MR imaging using (R)-[11C]-verapamil with cyclosporin a: preliminary results on a surrogate marker of drug-resistant epilepsy. AJNR Am J Neuroradiol. 2016;37:600–6.

    Article  PubMed  Google Scholar 

  133. Bauer M, Karch R, Zeitlinger M, Liu J, Koepp MJ, Asselin MC, et al. In vivo P-glycoprotein function before and after epilepsy surgery. Neurology. 2014;83:1326–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Duffy BA, Choy M, Riegler J, Wells JA, Anthony DC, Scott RC, et al. Imaging seizure-induced inflammation using an antibody targeted iron oxide contrast agent. NeuroImage. 2012;60:1149–55.

    Article  CAS  PubMed  Google Scholar 

  135. Portnoy E, Polyak B, Inbar D, Kenan G, Rai A, Wehrli SL, et al. Tracking inflammation in the epileptic rat brain by bi-functional fluorescent and magnetic nanoparticles. Nanomedicine. 2016;12:1335–45.

    Article  CAS  PubMed  Google Scholar 

  136. Salar S, Maslarova A, Lippmann K, Nichtweiss J, Weissberg I, Sheintuch L, et al. Blood-brain barrier dysfunction can contribute to pharmacoresistance of seizures. Epilepsia. 2014;55:1255–63.

    Article  CAS  PubMed  Google Scholar 

  137. Puttachary S, Sharma S, Verma S, Yang Y, Putra M, Thippeswamy A, et al. 1400W, a highly selective inducible nitric oxide synthase inhibitor is a potential disease modifier in the rat kainate model of temporal lobe epilepsy. Neurobiol Dis. 2016;93:184–200.

    Article  CAS  PubMed  Google Scholar 

  138. Yeghiazaryan M, Rutkowska-Wlodarczyk I, Konopka A, Wilczynski GM, Melikyan A, Korkotian E, et al. DP-b99 modulates matrix metalloproteinase activity and neuronal plasticity. PLoS One. 2014;9:e99789.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Szakács G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM. Targeting multidrug resistance in cancer. Nat Rev Drug Discov. 2006;5:219–34.

    Article  PubMed  CAS  Google Scholar 

  140. Potschka H, Löscher W. In vivo evidence for P-glycoprotein-mediated transport of phenytoin at the blood-brain barrier of rats. Epilepsia. 2001;42:1231–40.

    Article  CAS  PubMed  Google Scholar 

  141. van Vliet E, van Schaik R, Edelbroek P, Redeker S, Aronica E, Wadman W, et al. Inhibition of the multidrug transporter P-glycoprotein improves seizure control in phenytoin-treated chronic epileptic rats. Epilepsia. 2006;47:672–80.

    Article  PubMed  Google Scholar 

  142. Iannetti P, Spalice A, Parisi P. Calcium-channel blocker verapamil administration in prolonged and refractory status epilepticus. Epilepsia. 2005;46:967–9.

    Article  PubMed  Google Scholar 

  143. Summers M, Moore J, McAuley J. Use of verapamil as a potential P-glycoprotein inhibitor in a patient with refractory epilepsy. Ann Pharmacother. 2004;38:1631–4.

    Article  PubMed  Google Scholar 

  144. Asadi-Pooya AA, Razavizadegan SM, Abdi-Ardekani A, Sperling MR. Adjunctive use of verapamil in patients with refractory temporal lobe epilepsy: a pilot study. Epilepsy Behav. 2013;29:150–4.

    Article  PubMed  Google Scholar 

  145. Borlot F, Wither RG, Ali A, Wu N, Verocai F, Andrade DM. A pilot double-blind trial using verapamil as adjuvant therapy for refractory seizures. Epilepsy Res. 2014;108:1642–51.

    Article  CAS  PubMed  Google Scholar 

  146. Narayanan J, Frech R, Walters S, Patel V, Frigerio R, Maraganore DM. Low dose verapamil as an adjunct therapy for medically refractory epilepsy—an open label pilot study. Epilepsy Res. 2016;126:197–200.

    Article  CAS  PubMed  Google Scholar 

  147. Sasongko L, Link JM, Muzi M, Mankoff DA, Yang X, Collier AC, et al. Imaging P-glycoprotein transport activity at the human blood-brain barrier with positron emission tomography. Clin Pharmacol Ther. 2005;77:503–14.

    Article  CAS  PubMed  Google Scholar 

  148. Eyal S, Ke B, Muzi M, Link JM, Mankoff DA, Collier AC, et al. Regional P-glycoprotein activity and inhibition at the human blood-brain barrier as imaged by positron emission tomography. Clin Pharmacol Ther. 2010;87:579–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Kannan P, John C, Zoghbi SS, Halldin C, Gottesman MM, Innis RB, et al. Imaging the function of P-glycoprotein with radiotracers: pharmacokinetics and in vivo applications. Clin Pharmacol Ther. 2009;86:368–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Liu L, Collier AC, Link JM, Domino KB, Mankoff DA, Eary JF, et al. Modulation of P-glycoprotein at the human blood-brain barrier by quinidine or rifampin treatment: a positron emission tomography imaging study. Drug Metab Dispos. 2015;43:1795–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Fox E, Bates S. Tariquidar (XR9576): a P-glycoprotein drug efflux pump inhibitor. Expert Rev Anticancer Ther. 2007;7:447–59.

    Article  CAS  PubMed  Google Scholar 

  152. Bauer M, Karch R, Zeitlinger M, Philippe C, Römermann K, Stanek J, et al. Approaching complete inhibition of P-glycoprotein at the human blood-brain barrier: an (R)-[11C]verapamil PET study. J Cereb Blood Flow Metab. 2015;35:743–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Baron JC, Roeda D, Munari C, Crouzel C, Chodkiewicz JP, Comar D. Brain regional pharmacokinetics of 11C-labeled diphenylhydantoin: positron emission tomography in humans. Neurology. 1983;33:580–5.

    Article  CAS  PubMed  Google Scholar 

  154. Miller DS, Bauer B, Hartz AM. Modulation of P-glycoprotein at the blood-brain barrier: opportunities to improve central nervous system pharmacotherapy. Pharmacol Rev. 2008;60:196–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Bankstahl JP, Hoffmann K, Bethmann K, Löscher W. Glutamate is critically involved in seizure-induced overexpression of P-glycoprotein in the brain. Neuropharmacology. 2008;54:1006–16.

    Article  CAS  PubMed  Google Scholar 

  156. Bauer B, Hartz AM, Pekcec A, Toellner K, Miller DS, Potschka H. Seizure-induced up-regulation of P-glycoprotein at the blood-brain barrier through glutamate and cyclooxygenase-2 signaling. Mol Pharmacol. 2008;73:1444–53.

    Article  CAS  PubMed  Google Scholar 

  157. Pekcec A, Unkrüer B, Schlichtiger J, Soerensen J, Hartz AM, Bauer B, et al. Targeting prostaglandin E2 EP1 receptors prevents seizure-associated P-glycoprotein up-regulation. J Pharmacol Exp Ther. 2009;330:939–47.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Institute for Psychobiology in Israel. Sara Eyal is affiliated with the David R. Bloom Centre for Pharmacy and Dr. Adolf and Klara Brettler Centre for Research in Molecular Pharmacology and Therapeutics at The Hebrew University of Jerusalem, Israel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Eyal.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Guest Editors: Marilyn E. Morris, Jean-Michel Scherrmann, and Joseph Nicolazzo

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, H., Mann, A., Ekstein, D. et al. Breaking Bad: the Structure and Function of the Blood-Brain Barrier in Epilepsy. AAPS J 19, 973–988 (2017). https://doi.org/10.1208/s12248-017-0096-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-017-0096-2

Key words

Navigation