Skip to main content

Advertisement

Log in

Therapeutic Application of Pharmacogenomics in Oncology

  • Review Article
  • Theme: Emerging Role of Pharmacogenomics (PGx) and Big Data on Development of Biologics
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Personalizing cancer treatment has been proved to be difficult for healthcare providers due to the nature of chemotherapies which includes narrow therapeutic indices, severe and potential life-threatening toxicities, and variable response rates and efficacies. Studies in pharmacogenomics (PGx) may help guide clinicians to personalize treatment for cancer patients. Implementing PGx in cancer treatment may offer choices to anticipate differences in drug response, resistance, efficacy, and toxicity within chemotherapeutic agents and targeted immune biologic agents. This can be used to achieve optimization of treatment regimens based on patients’ variability. Many of the cancer treatment agents are biologics targeting specific antigens expressed on cancer cells, or blocking stimulators and signal transduction pathways of tumor growth, or enhance anticancer immune responses. It is now crucial for clinicians to understand the important association of clinically important biomarker polymorphisms with the clinical benefits of cancer therapies. By identifying specific PGx biomarker polymorphisms present in cancer cells, physicians can select and tailor a patient’s treatment based on his or her genetic profile. PGx-guided cancer treatment may have the ability to improve the survival of patients while avoiding the unnecessary cost due to unresponsive treatment and toxicities of that patients experience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jemal A, Center MM, DeSantis C, et al. Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol Biomarkers Prev. 2010;19(8):1893–907.

    Article  PubMed  Google Scholar 

  2. Albertini L, Siest G, Jeannesson E, Visvikis-Siest S. Availability of pharmacogenetic and pharmacogenomic information in anticancer drug monographs in France: personalized cancer therapy. Pharmacogenomics. 2011;12:681–91.

    Article  PubMed  Google Scholar 

  3. McLeord HL, Krynetski EY, Relling MV, et al. Genetic polymorphism of thiopurinemethyltransferase and its clinical relevance for childhood acute lymphoblastic leukemia. Leukemia. 2000;14:567–72.

    Article  Google Scholar 

  4. Feng X, Pearson D, Listiawan M, Cheung C. Pharmacogenomic biomarkers for toxicities associated with cancer therapy. US Pharmacist. Hematol Oncol Suppl. 2012;37(1):2–7.

    CAS  Google Scholar 

  5. Feng X, Vyas D, Guan B. Novel immune and target therapy for skin cancer. US Pharmacist. Hematol Oncol Suppl. 2012;37(11):7–11.

    Google Scholar 

  6. Lee W, Lockhart AG, Kim RB, et al. Cancer pharmacogenomics: powerful tools in cancer chemotherapy and drug development. Oncologist. 2005;10:104–11.

    Article  CAS  PubMed  Google Scholar 

  7. Weng L, Zhang L, Peng Y, Huang RS. Pharmacogenetics and pharmacogenomics: a bridge to individualized cancer therapy. Pharmacogenomics. 2013;14(3):15–24.

    Article  Google Scholar 

  8. Feng X, Brazill B, Pearson D. Therapeutic application of pharmacogenomics in oncology: selective biomarkers for cancer treatment. US Pharmacist. Hematol Oncol Suppl. 2011;36(11):5–12.

    Google Scholar 

  9. Janelle M, Hoskins RM, et al. UGT1A1*28 genotype and irinotecan-induced neutropenia: dose matters. J Natl Cancer Inst. 2007;99:1290–5.

    Article  Google Scholar 

  10. Gamelin E, Delva R, Jacob J, et al. Individual fluorouracil dose adjustment based on pharmacokinetic follow-up compared with conventional dosage: results of a multicenter randomized trial of patients with metastatic colorectal cancer. J Clin Oncol. 2008;26:2099–105.

    Article  CAS  PubMed  Google Scholar 

  11. Schwab M, Zanger UM, Marx C, et al. Role of genetic and nongenetic factors for fluorouracil treatment-related severe toxicity: a prospective clinical trial by the German 5-FU toxicity study group. J Clin Oncol. 2008;26:2131–8.

    Article  CAS  PubMed  Google Scholar 

  12. Evans WE, Hon YY, Bomgaars L, et al. Preponderance of thiopurine S-methyltransferase deficiency and heterozygosity among patients intolerant to mercaptopurine or azathioprine. J Clin Oncol. 2001;19:2293–301.

    CAS  PubMed  Google Scholar 

  13. Browning LA, Kruse JA. Hemolysis and methemoglobinemia secondary to rasburicase administration. Ann Pharmacother. 2005;39:1932–5.

    Article  PubMed  Google Scholar 

  14. Beutler E. G6PD deficiency. Blood. 1994;84:3613–36.

    CAS  PubMed  Google Scholar 

  15. Elitek [package insert] Bridgewater: Sanofi-Aventis U.S. LLC, 2011.

  16. Ansari M, Lauzon-Joset JF, Vachon MF, et al. Influence of GST gene polymorphisms on busulfan pharmacokinetics in children. Bone Marrow Transplant. 2010;45:261–7.

    Article  CAS  PubMed  Google Scholar 

  17. Tafinlar [package insert] Research Triangle Park: Glaxo Smith Kline; 2014.

  18. Relling MV, Hancock ML, Boyett JM, et al. Prognostic importance of 6-mercaptopurine dose intensity in acute lymphoblastic leukemia. Blood. 1999;93:2817–23.

    CAS  PubMed  Google Scholar 

  19. Purinethol [package insert] Horsham. TEVA Biologics and Specialty Products; 2011.

  20. Donnan JR, Ungar WJ, Mathews M, Hancock-Howard RL, Rahman P. A cost effectiveness analysis of thiopurinemethyltransferase testing for guiding 6-mercaptopurine dosing in children with acute lymphoblastic leukemia. Pediatr Blood Cancer. 2011;57(2):231–9.

    Article  PubMed  Google Scholar 

  21. Relling MV, Gardner EE, Sandborn WJ, Schmiegelow K, Pui CH, Yee SW, et al. Clinical pharmacogenetics implementation consortium guidelines for thiopurinemethyltransferase genotype and thiopurine dosing: 2013 update. Clin Pharmacol Ther. 2013;93(4):324–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lara Jr PN, Natale R, et al. Phase III trial of irinotecan/cisplatin compared with etoposide/cisplatin in extensive-stage small-cell lung cancer: clinical and pharmacogenomic results from SWOG S0124. J Clin Oncol. 2009;27:2530–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang Y, Shen L, Xu N, et al. UGT1A1 predicts outcome in colorectal cancer treated with irinotecan and fluorouracil. World J Gastroenterol. 2012;18(45):6635–44.

  24. Toffoli G, Cecchin E, Corona G, et al. The role of UGT1A1*28 polymorphism in the pharmacodynamics and pharmacokinetics of irinotecan in patients with metastatic colorectal cancer. J Clin Oncol. 2006;24:3061–8.

    Article  CAS  PubMed  Google Scholar 

  25. Camptosar (irinotecan HCl) injection safety labeling changes approved by FDA Center for Drug Evaluation and Research (CDER). FDA U.S. Food and Drug Administration. http://www.fda.gov/Safety/MedWatch/SafetyInformation/ucm215480.htm. Accessed 27 Nov 2015.

  26. Camptosar [package insert]. New York: Pfizer Inc; 1996

  27. Bhushan S, Howard M, Walko CM. Role of pharmacogenetics as a predictive biomarkers response and/or toxicity in the treatment of colorectal cancer. Clin Colorectal Cancer. 2009;8(1):15–21.

    Article  CAS  PubMed  Google Scholar 

  28. Bosma PJ, Chowdhury JR, Bakker C, et al. The genetic basis of the reduced expression of bilirubin UDP-glucuronosyltransferase 1 in Gilbert’s syndrome. N Engl J Med. 1995;333:1171–5.

    Article  CAS  PubMed  Google Scholar 

  29. Tasigna [package insert]. East Hanover: Novartis Pharmaceuticals Corporation: 2007.

  30. Fact sheet: biological therapies for cancer [Internet]. Bethesda: National Cancer Institute [2013] Available from:http://www.cancer.gov/about-cancer/treatment/types/immunotherapy/bio-therapies-fact-sheet. Accessed 27 Nov 2015.

  31. Cook KM, Figg WD. Angiogenesis inhibitors: current strategies and future prospects. CA Cancer J Clin. 2010;60(4):222–43.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Davis MI, Hunt JP, et al. Comprehensive analysis of kinase inhibitor selectivity. Nat Biotechnol. 2011;29(11):1046–51.

    Article  CAS  PubMed  Google Scholar 

  33. Dougan M, Dranoff G. Immunotherapy of cancer. In: Wang R-F, editor. Innate immune regulation and cancer immunotherapy. New York: Springer; 2012. p. 391–414.

  34. Metcalf D. The colony-stimulating factors and cancer. Nat Rev Cancer. 2010;10(6):425–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Palucka K, Ueno H, Banchereau J. Recent developments in cancer vaccines. J Immunol. 2011;186(3):1325–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Table of pharmacogenomic biomarkers in drug labels. FDA. Available from www.fda.gov/drugs/scienceresearch/researchareas/pharmacogenetics/ucm083378.htm . Accessed 10 June 2011.

  37. Tesch G, Amur S, Schousboe JT, et al. Successes achieved and challenges ahead in translating biomarkers into clinical applications. AAPS J. 2010;12:243–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Masters GA, Krilov L, Bailey HH, et al. Clinical cancer advances 2015: annual report on progress against cancer from the American Society of Clinical Oncology. J Clin Oncol. 2015;33(7):786–809.

    Article  PubMed  Google Scholar 

  39. Sharom FJ. ABC multidrug transporters: structure, function and role in chemoresistance. Pharmacogenomics. 2008;9:105–27.

    Article  CAS  PubMed  Google Scholar 

  40. Robey RW, Honjo Y, Morisaki K, et al. Mutations at amino-acid 482 in the ABCG2 gene affect substrate and antagonist specificity. Br J Cancer. 2003;89:1971–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kao CH, Hsieh JF, Tsai SC, et al. Quickly predicting chemotherapy response to paclitaxel-based therapy in non-small cell lung cancer by early technetium-99m methoxyisobutylisonitrile chest single-photon-emission computed tomography. Clin Cancer Res. 2000;6:820–4.

    CAS  PubMed  Google Scholar 

  42. Cizmarikova M, Wagnerova M, Schonova L, Habalova V, et al. MDR1 (C3435T) polymorphism: relation to the risk of breast cancer and therapeutic outcome. Pharmacogenomics J. 2010;10:62–9.

    Article  CAS  PubMed  Google Scholar 

  43. Paez JG, Jänne PA, Lee JC, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304:1497–500.

    Article  CAS  PubMed  Google Scholar 

  44. Maheswaran S, Sequist LV, Nagrath S, et al. Detection of mutations in EGFR in circulating lung-cancer cells. N Engl J Med. 2008;359:366–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Corcoran RB, Dias-Santagata D, Bergethon K, et al. BRAF gene amplification can promote acquired resistance to MEK inhibitors in cancer cells harboring the BRAF V600E mutation. Sci Signal. 2010;3(149):ra84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Engelman JA, Settleman J. Acquired resistance to tyrosine kinase inhibitors during cancer therapy. Curr Opin Genet Dev. 2008;18:73–9.

    Article  CAS  PubMed  Google Scholar 

  47. Kwak EL, Bang YJ, Camidge R, et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med. 2010;363:1693–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang Y, Yin J, Li X, et al. The association of transporter genes polymorphisms and lung cancer chemotherapy response. PLoS One. 2014;9(3):e91967.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ekhart C, Doodeman VD, Rodenhuis S, et al. Influence of polymorphisms of drug metabolizing enzymes (CYP2B6, CYP2C9, CYP2C19, CYP3A4, CYP3A5, GSTA1, GSTP1, ALDH1A1 and ALDH3A1) on the pharmacokinetics of cyclophosphamide and 4-hydroxycyclophosphamide. Pharmacogenet Genomics. 2008;18:515–23.

    Article  CAS  PubMed  Google Scholar 

  50. Rodriguez-Antona C, Ingelman-Sundberg M. Cytochrome P450 pharmacogenetics and cancer. Oncogene. 2006;25:1679–91.

    Article  CAS  PubMed  Google Scholar 

  51. Aebi S, Davidson T, Gruber G, et al. Cardoso primary breast cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2011;22(Supplement 6):vi12–24.

    Article  PubMed  Google Scholar 

  52. Rohrbacher M, Kirchhof A, Geisslinger G, et al. Pyrosequencing-based screening for genetic polymorphisms in cytochrome P450 2B6 of potential clinical relevance. Pharmacogenomics. 2006;7(7):995–1002.

    Article  CAS  PubMed  Google Scholar 

  53. Schwahn B, Rozen R. Polymorphisms in the methylenetetrahydrofolate reductase gene: clinical consequences. Am J Pharmacogenomics. 2001;1:189–201.

    Article  CAS  PubMed  Google Scholar 

  54. Herceptin [package insert] South San Francisco: Genentech, Inc; 2015.

  55. Schroth W, Goetz MP, Hamann U, et al. Association between CYP2D6 polymorphisms and outcomes among women with early stage breast cancer treated with tamoxifen. JAMA. 2009;302(13):1429–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tomalik-Scharte D, Lazar A, Fuhr U, et al. The clinical role of genetic polymorphisms in drug-metabolizing enzymes. Pharmacogenomics J. 2008;8:4–15.

    Article  CAS  PubMed  Google Scholar 

  57. Bang YJ, Van Cutsem E, Feyereislova A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;376(9742):687–97.

    Article  CAS  PubMed  Google Scholar 

  58. Baselga J, Cortes J, Kim SB, et al. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med. 2012;366:109–19.

    Article  CAS  PubMed  Google Scholar 

  59. Perjeta [package insert] South San Francisco: Genentech, Inc; 2015.

  60. Verma S, Miles D, Gianni L, et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med. 2012;367:1783–91.

    Article  CAS  PubMed  Google Scholar 

  61. Burnstein HJ, Temin S, Anderson H, et al. Adjuvant endocrine therapy for women with hormone receptor–positive breast cancer: American Society of Clinical Oncology Clinical practice guideline focused update. J Clin Oncol. 2014;32(21):2255–69.

    Article  Google Scholar 

  62. Adjuvant endocrine therapy for women with hormone receptor-positive breast cancer: American Society of Clinical Oncology Clinical Practice Guideline Focused Update 9/3/2014 http://www.asco.org/quality-guidelines/adjuvant-endocrine-therapy-women-hormone-receptor%E2%80%93positive-breast-cancer-american. Accessed 3 Dec 2015.

  63. NCCN clinical practice guidelines in oncology™: Breast Cancer [v.2.2015]. http://www.nccn.org/professionals/physician_gls/pdf/aml.pdf. Web Accessed 23 April 2015.

  64. Oikonomou E, Koustas E, Goulielmaki M, et al. BRAF vs RAS oncogenes: are mutations of the same pathway equal? Differential signalling and therapeutic implications. Oncotarget. 2014;5(23):11752–77.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Chapman PB, Hauschild A, Robert C, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364(26):2507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hauschild A, Grob JJ, Demidov LV, et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2012;380(9839):358.

    Article  CAS  PubMed  Google Scholar 

  67. Mekinist [package insert] Research Triangle Park: GlaxoSmithKline; 2014.

  68. Flaherty KT, Robert C, Hersey P, et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med. 2012;367(2):107–14.

    Article  CAS  PubMed  Google Scholar 

  69. Keytruda [package insert] Whitehouse Station: Merck & Co. Inc; 2015.

  70. Opdivo [package insert] Princeton: Bristol-Myers Squibb Company; 2015.

  71. Robert C, Ribas A, Wolchok JD. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet. 2014;384:1109–17.

    Article  CAS  PubMed  Google Scholar 

  72. Robert C, Long GV, Brady B, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372:320–30.

    Article  CAS  PubMed  Google Scholar 

  73. Vlahovic G, Crawford J. Activation of tyrosine kinases in cancer. Oncologist. 2003;8:531–8.

    Article  CAS  PubMed  Google Scholar 

  74. Xalkori [package insert] NY: Pfizer; 2013.

  75. Takahashi T, Sonobe M, Kobayashi M, et al. Clinicopathologic features of non-small-cell lung cancer with EML4-ALK fusion gene. Ann Surg Oncol. 2010;17(3):889.

    Article  PubMed  Google Scholar 

  76. Shaw AT, Kim DW, Nakagawa K, et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med. 2013;368(25):2385.

    Article  CAS  PubMed  Google Scholar 

  77. Zykadia [package insert] East Hanover: Novartis Pharmaceutical; 2014.

  78. Van Krieken JH, Jung A, Kirchner T, et al. KRAS mutation testing for predicting response to anti-EGFR therapy for colorectal carcinoma: proposal for an European quality assurance program. Virchows Arch. 2008;453:417–31.

    Article  PubMed  Google Scholar 

  79. Jackman DM, Miller VA, Cioffredi LA, et al. Impact of epidermal growth factor receptor and KRAS mutations on clinical outcomes in previously untreated non-small cell lung cancer patients: results of an online tumor registry of clinical trials. Clin Cancer Res. 2009;15:5267–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. De Braekeleer E, Douet-Guilbert N, Rowe D, et al. ABL1 fusion genes in hematological malignancies: a review. Eur J Haemotol. 2011;86(5):361–71.

    Article  Google Scholar 

  81. Terasawa T, Dahabreh I, Trikalinos T. BCR-ABL mutation testing to predict response to tyrosine kinase inhibitors in patients with chronic myeloid leukemia. PLOS Curr Evidence Genomic Tests. 2010. doi:10.1371/currents.RRN1204. Edition 1.

    Google Scholar 

  82. Tanaka R, Kimura S. Abl tyrosine kinase inhibitors for overriding Bcr-Abl/T315I: from the second to third generation. Expert Rev Anticancer Ther. 2008;8(9):1387–98.

    Article  CAS  PubMed  Google Scholar 

  83. Bosulif [package insert] New York: Pfizer Labs; 2014.

  84. Iclusig [package insert] Cambridge: Ariad Pharmaceuticals, Inc; 2015.

  85. Watkins DB, Hughes TP, White DL. OCT1 and imatinib transport in CML: is it clinically relevant? Leukemia. 2015;29(10):1960–9.

    Article  CAS  PubMed  Google Scholar 

  86. Habel LA, Shak S, Jacobs MK, et al. A population-based study of tumor gene expression and risk of breast cancer death among lymph node-negative patients. Breast Cancer Res. 2006;8(3):R25.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Seto T, Kiura K, Nishio M, et al. CH5424802 (RO5424802) for patients with ALK-rearranged advanced non-small-cell lung cancer (AF-001JP study): a single-arm, open-label, phase 1-2 study. Lancet Oncol. 2013;14(7):590.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Feng.

Additional information

Guest Editors: Shraddha Thakkar and Nisha Nanaware-Kharade

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Somtakoune, S.D., Cheung, C. et al. Therapeutic Application of Pharmacogenomics in Oncology. AAPS J 18, 819–829 (2016). https://doi.org/10.1208/s12248-016-9926-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-016-9926-x

KEY WORDS

Navigation