Skip to main content

Advertisement

Log in

Mechanism-Based Competitive Binding Model to Investigate the Effect of Neonatal Fc Receptor Binding Affinity on the Pharmacokinetic of Humanized Anti-VEGF Monoclonal IgG1 Antibody in Cynomolgus Monkey

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The quantitative relationship between neonatal Fc receptor (FcRn) binding affinity at both acidic and physiological pH and the pharmacokinetics of protein engineered FcRn IgG1 variants has not yet been reported. Our objective was to develop a quantitatively mechanism-based competitive binding model to describe the effects of FcRn binding affinity at acidic and physiological pH on the pharmacokinetics of anti-VEGF IgG1 antibodies when both endogenous and exogenous antibodies are competing for the same FcRn. Pharmacokinetic (PK) and FcRn binding data from five Fc variants of humanized anti-VEGF IgG1 monoclonal antibodies with wide range of FcRn binding affinity were used for the analysis. Sixty-seven anti-VEGF IgG1 antibody-treated animals and 25 control animals with simulated endogenous IgG levels were used to develop the final model. A hybrid iterative two stages and Monte Carlo parametric expectation-maximization method was used to obtain the final model parameters estimates. The final model well described the observed PK data. Quantitative FcRn binding affinity-pharmacokinetics relationships was constructed to provide important biological insights in better understanding of the FcRn binding effect on pharmacokinetics of anti-VEGF IgG1 antibodies in cynomolgus monkeys and served as an important model-based drug discovery platform to guide the design and development of the future generation of anti-VEGF or other therapeutic IgG1 antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Aggarwal SR. What’s fueling the biotech engine—2011 to 2012. Nat Biotechnol. 2012;30:1191–7.

    Article  CAS  PubMed  Google Scholar 

  2. Nestorov I. Clinical pharmacokinetics of tumor necrosis factor antagonists. J rheumatol Suppl. 2005;74:13–8.

    CAS  PubMed  Google Scholar 

  3. Shen C, Assche GV, Colpaert S, Maerten P, Geboes K, Rutgeerts P, et al. Adalimumab induces apoptosis of human monocytes: a comparative study with infliximab and etanercept. Aliment Pharmacol Ther. 2005;21:251–8.

    Article  CAS  PubMed  Google Scholar 

  4. Chames P, Van Regenmortel M, Weiss E, Baty D. Therapeutic antibodies: successes, limitations and hopes for the future. Br J Pharmacol. 2009;157:220–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Burmeister WP, Huber AH, Bjorkman PJ. Crystal structure of the complex of rat neonatal Fc receptor with Fc. Nature. 1994;372:379–83.

    Article  CAS  PubMed  Google Scholar 

  6. Raghavan M, Bonagura VR, Morrison SL, Bjorkman PJ. Analysis of the pH dependence of the neonatal Fc receptor/immunoglobulin G interaction using antibody and receptor variants. Biochemistry. 1995;34:14649–57.

    Article  CAS  PubMed  Google Scholar 

  7. Roopenianand DC, Akilesh S. FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol. 2007;7:715–25.

    Article  Google Scholar 

  8. Brambell FW, Hemmings WA, Morris IG. A theoretical model of gamma-globulin catabolism. Nature. 1964;203:1352–4.

    Article  CAS  PubMed  Google Scholar 

  9. Hinton PR, Johlfs MG, Xiong JM, Hanestad K, Ong KC, Bullock C, et al. Engineered human IgG antibodies with longer serum half-lives in primates. J Biol Chem. 2004;279:6213–6.

    Article  CAS  PubMed  Google Scholar 

  10. Hinton PR, Xiong JM, Johlfs MG, Tang MT, Keller S, Tsurushita N. An engineered human IgG1 antibody with longer serum half-life. J Immunol. 2006;176:346–56.

    Article  CAS  PubMed  Google Scholar 

  11. Dall’Acqua WF, Kiener PA, Wu H. Properties of human IgG1s engineered for enhanced binding to the neonatal Fc receptor (FcRn). J Biol Chem. 2006;281:23514–24.

    Article  PubMed  Google Scholar 

  12. Deng R, Loyet KM, Lien S, Iyer S, DeForge LE, Theil FP, et al. Pharmacokinetics of humanized monoclonal anti-tumor necrosis factor-{alpha} antibody and its neonatal Fc receptor variants in mice and cynomolgus monkeys. Drug Metab Dispos Biol Fate Chem. 2010;38:600–5.

    Article  CAS  PubMed  Google Scholar 

  13. Yeung YA, Leabman MK, Marvin JS, Qiu J, Adams CW, Lien S, et al. Engineering human IgG1 affinity to human neonatal Fc receptor: impact of affinity improvement on pharmacokinetics in primates. J Immunol. 2009;182:7663–71.

    Article  CAS  PubMed  Google Scholar 

  14. Dall’Acqua WF, Woods RM, Ward ES, Palaszynski SR, Patel NK, Brewah YA, et al. Increasing the affinity of a human IgG1 for the neonatal Fc receptor: biological consequences. J Immunol. 2002;169:5171–80.

    Article  PubMed  Google Scholar 

  15. Shields RL, Namenuk AK, Hong K, Meng YG, Rae J, Briggs J, et al. High resolution mapping of the binding site on human IgG1 for Fc gamma RI, Fc gamma RII, Fc gamma RIII, and FcRn and design of IgG1 variants with improved binding to the Fc gamma R. J Biol Chem. 2001;276:6591–604.

    Article  CAS  PubMed  Google Scholar 

  16. Ng CM, Loyet KM, Iyer S, Fielder PJ, Deng R. Modeling approach to investigate the effect of neonatal Fc receptor binding affinity and anti-therapeutic antibody on the pharmacokinetic of humanized monoclonal anti-tumor necrosis factor-alpha IgG antibody in cynomolgus monkey. Eur J Pharm Sci Off J Eur Fed Pharm Sci. 2014;51:51–8.

    CAS  Google Scholar 

  17. Chen Y, Balthasar JP. Evaluation of a catenary PBPK model for predicting the in vivo disposition of mAbs engineered for high-affinity binding to FcRn. AAPS J. 2012;14:850–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Robbie GJ, Criste R, Dall’acqua WF, Jensen K, Patel NK, Losonsky GA, et al. A novel investigational Fc-modified humanized monoclonal antibody, motavizumab-YTE, has an extended half-life in healthy adults. Antimicrob Agents Chemother. 2013;57:6147–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xiao JJ. Pharmacokinetic models for FcRn-mediated IgG disposition. J Biomed Biotechnol. 2012;2012:282989.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kim J, Hayton WL, Robinson JM, Anderson CL. Kinetics of FcRn-mediated recycling of IgG and albumin in human: pathophysiology and therapeutic implications using a simplified mechanism-based model. Clin Immunol. 2007;122:146–55.

    Article  CAS  PubMed  Google Scholar 

  21. Dengand R, Balthasar JP. Pharmacokinetic/pharmacodynamic modeling of IVIG effects in a murine model of immune thrombocytopenia. J Pharm Sci. 2007;96:1625–37.

    Article  Google Scholar 

  22. Hansen RJ, Balthasar JP. Pharmacokinetics, pharmacodynamics, and platelet binding of an anti-glycoprotein IIb/IIIa monoclonal antibody (7E3) in the rat: a quantitative rat model of immune thrombocytopenic purpura. J Pharmacol Exp Ther. 2001;298:165–71.

    CAS  PubMed  Google Scholar 

  23. Xiao JJ, Krzyzanski W, Wang YM, Li H, Rose MJ, Ma M, et al. Pharmacokinetics of anti-hepcidin monoclonal antibody Ab 12B9m and hepcidin in cynomolgus monkeys. AAPS J. 2010;12:646–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hansenand RJ, Balthasar JP. Pharmacokinetic/pharmacodynamic modeling of the effects of intravenous immunoglobulin on the disposition of antiplatelet antibodies in a rat model of immune thrombocytopenia. J Pharm Sci. 2003;92:1206–15.

    Article  Google Scholar 

  25. Hansenand RJ, Balthasar JP. Effects of intravenous immunoglobulin on platelet count and antiplatelet antibody disposition in a rat model of immune thrombocytopenia. Blood. 2002;100:2087–93.

    Google Scholar 

  26. Chetty M, Li L, Rose R, Machavaram K, Jamei M, Rostami-Hodjegan A, et al. Prediction of the pharmacokinetics, pharmacodynamics, and efficacy of a monoclonal antibody, using a physiologically based pharmacokinetic FcRn model. Front Immunol. 2014;5:670.

    PubMed  Google Scholar 

  27. Yeung YA, Wu X, Reyes 2nd AE, Vernes JM, Lien S, Lowe J, et al. A therapeutic anti-VEGF antibody with increased potency independent of pharmacokinetic half-life. Cancer Res. 2010;70:3269–77.

    Article  CAS  PubMed  Google Scholar 

  28. GE-Healthcare. BiaCore assay handbook. https://www.gelifesciences.com/gehcls_images/GELS/Related%20Content/Files/1363789281999/litdoc29019400_20130430000122.pdf. Accessed 25 April 2014.

  29. Biagini RE, Moorman WJ, Lal JB, Gallagher JS, Bernstein IL. Normal serum IgE and IgG antibody levels in adult male cynomolgus monkeys. Lab Anim Sci. 1988;38:194–6.

    CAS  PubMed  Google Scholar 

  30. Beckman-Coulter. Beckman coulter immage immunochemistry systems: IgG. https://www.beckmancoulter.com/wsrportal/techdocs?docname=/cis/988636/AF/EN_IGG.pdf. Accessed 16 April 2014.

  31. Datta-Mannan A, Witcher DR, Tang Y, Watkins J, Wroblewski VJ. Monoclonal antibody clearance. Impact of modulating the interaction of IgG with the neonatal Fc receptor. J Biol Chem. 2007;282:1709–17.

    Article  CAS  PubMed  Google Scholar 

  32. Yan X, Chen Y, Krzyzanski W. Methods of solving rapid binding target-mediated drug disposition model for two drugs competing for the same receptor. J Pharmacokinet Pharmacodyn. 2012;39:543–60.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kenakin TP. A pharmacology primer: theory, applications, and methods. Amsterdam: Academic Press/Elsevier; 2009.

    Google Scholar 

  34. Bauer RJ, Guzy S. Monte Carlo Parametric Expectation Maximization (MC-PEM) method for analyzing population pharmacokinetic/pharmacodynamic (PK/PD) data. In: D’Argenio DZ, editor. Advanced methods of pharmacokinetic and pharamcodynamic system analysis, vol. 3. Boston: Kluwer Academic Publishers; 2004. p. 135–63.

    Chapter  Google Scholar 

  35. Ng CM, Joshi A, Dedrick RL, Garovoy MR, Bauer RJ. Pharmacokinetic-pharmacodynamic-efficacy analysis of efalizumab in patients with moderate to severe psoriasis. Pharm Res. 2005;22:1088–100.

    Article  CAS  PubMed  Google Scholar 

  36. Ng CM, Bai S, Takimoto CH, Tang MT, Tolcher AW. Mechanism-based receptor-binding model to describe the pharmacokinetic and pharmacodynamic of an anti-alpha5beta1 integrin monoclonal antibody (volociximab) in cancer patients. Cancer Chemother Pharmacol. 2010;65:207–17.

    Article  CAS  PubMed  Google Scholar 

  37. Gregersen MI, Sear H, Rawson RA, Chien S, Saiger GL. Cell volume, plasma volume, total blood volume and F cells factor in the rhesus monkey. Am J Phys. 1959;196:184–7.

    CAS  Google Scholar 

  38. Suzuki T, Ishii-Watabe A, Tada M, Kobayashi T, Kanayasu-Toyoda T, Kawanishi T, et al. Importance of neonatal FcR in regulating the serum half-life of therapeutic proteins containing the Fc domain of human IgG1: a comparative study of the affinity of monoclonal antibodies and Fc-fusion proteins to human neonatal FcR. J Immunol. 2010;184:1968–76.

    Article  CAS  PubMed  Google Scholar 

  39. Ober RJ, Martinez C, Vaccaro C, Zhou J, Ward ES. Visualizing the site and dynamics of IgG salvage by the MHC class I-related receptor, FcRn. J Immunol. 2004;172:2021–9.

    Article  CAS  PubMed  Google Scholar 

  40. Wang W, Wang EQ, Balthasar JP. Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther. 2008;84:548–58.

    Article  CAS  PubMed  Google Scholar 

  41. Molskness TA, Stouffer RL, Burry KA, Gorrill MJ, Lee DM, Patton PE. Circulating levels of free and total vascular endothelial growth factor (VEGF)-A, soluble VEGF receptors-1 and -2, and angiogenin during ovarian stimulation in non-human primates and women. Hum Reprod. 2004;19:822–30.

    Article  CAS  PubMed  Google Scholar 

  42. Leabman MK, Meng YG, Kelley RF, DeForge LE, Cowan KJ, Iyer S. Effects of altered FcgammaR binding on antibody pharmacokinetics in cynomolgus monkeys. mAbs. 2013;5:896–903.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Borrok MJ, Wu Y, Beyaz N, Yu XQ, Oganesyan V, Dall’Acqua WF, et al. pH-dependent binding engineering reveals an FcRn affinity threshold that governs IgG recycling. J Biol Chem. 2015;290:4282–90.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chee M. Ng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Observed and model predicted binding of anti-VEGF IgG1 WT antibody and its variants to cynomolgus monkey FcRn at physiological pH. A) WT, B) N434H, C) T307Q/N434A, D) T307Q/N434, E) T307Q/E380A/N434A, and D) V308P/N434A. Open circle—observed values; solid line—model prediction (DOCX 78 kb)

Supplementary Figure 2

Individual serum endogenous IgG concentration-time profiles and model prediction from four animals without anti-VEGF IgG1 antibody treatment. For comparison purpose, the observed anti-VEGF IgG1 concentration-time profiles from two representative animals received either anti-VEGF IgG1 WT or FcRn variant with the highest FcRn binding affinity (V308P/N434A) were included in the plots. Open circle—observed anti-VEGF FcRn variant (V308P/N434A) IgG concentrations, open diamond—observed anti-VEGF IgG1 WT concentrations, solid line—model prediction (DOCX 31 kb)

Supplementary Figure 3

Schematic representation of mechanism-based competitive binding model for anti-VEGF IgG1 and endogenous IgG antibodies which assumed endosomal compartment was nested in peripheral compartment. (DOCX 36 kb)

Supplementary Figure 4

Inter-subject variance of CL by different anti-VEGF IgG1 and FcRn binding affinity (K D) at pH7 for the A) model without in vitro in vivo correlation (IVIVC) between the KD used in the model and the Biacore binding study and B) final model. Dashed line—LOESS smoothing line (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ng, C.M., Fielder, P.J., Jin, J. et al. Mechanism-Based Competitive Binding Model to Investigate the Effect of Neonatal Fc Receptor Binding Affinity on the Pharmacokinetic of Humanized Anti-VEGF Monoclonal IgG1 Antibody in Cynomolgus Monkey. AAPS J 18, 948–959 (2016). https://doi.org/10.1208/s12248-016-9911-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-016-9911-4

KEYWORDS

Navigation