Skip to main content

Advertisement

Log in

Approaches to Mitigate the Unwanted Immunogenicity of Therapeutic Proteins during Drug Development

  • Review Article
  • Theme: Controlling Unwanted Immunogenicity to Biotherapeutics
  • Published:
The AAPS Journal Aims and scope Submit manuscript

ABSTRACT

All biotherapeutics have the potential to induce an immune response. This immunological response is complex and, in addition to antibody formation, involves T cell activation and innate immune responses that could contribute to adverse effects. Integrated immunogenicity data analysis is crucial to understanding the possible clinical consequences of anti-drug antibody (ADA) responses. Because patient- and product-related factors can influence the immunogenicity of a therapeutic protein, a risk-based approach is recommended and followed by most drug developers to provide insight over the potential harm of unwanted ADA responses. This paper examines mitigation strategies currently implemented and novel under investigation approaches used by drug developers. The review describes immunomodulatory regimens used in the clinic to mitigate deleterious ADA responses to replacement therapies for deficiency syndromes, such as hemophilia A and B, and high risk classical infantile Pompe patients (e.g., cyclophosphamide, methotrexate, rituximab); novel in silico and in vitro prediction tools used to select candidates based on their immunogenicity potential (e.g., anti-CD52 antibody primary sequence and IFN beta-1a formulation); in vitro generation of tolerogenic antigen-presenting cells (APCs) to reduce ADA responses to factor VIII and IX in murine models of hemophilia; and selection of novel delivery systems to reduce in vivo ADA responses to highly immunogenic biotherapeutics (e.g., asparaginase). We conclude that mitigation strategies should be considered early in development for biotherapeutics based on our knowledge of existing clinical data for biotherapeutics and the immune response involved in the generation of these ADAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Malucchi S, Bertolotto A. Clinical aspects of immunogenicity to biopharmaceuticals. In: Weert M, Moller EH, editors. Immunogenicity of biopharmaceuticals. Biotechnology: pharmaceutical aspects. XII. 1st ed. New York: Springer; 2008. p. 27–56.

    Chapter  Google Scholar 

  2. Bartelds GM, Krieckaert CL, Nurmohamed MT, van Schouwenburg PA, Lems WF, Twisk JW, et al. Development of antidrug antibodies against adalimumab and association with disease activity and treatment failure during long-term follow-up. JAMA. 2011;305(14):1460–8.

    Article  CAS  PubMed  Google Scholar 

  3. Goodnow CC. Transgenic mice and analysis of B-cell tolerance. Annu Rev Immunol. 1992;10:489–518.

    Article  CAS  PubMed  Google Scholar 

  4. Hogquist KA, Baldwin TA, Jameson SC. Central tolerance: learning self-control in the thymus. Nat Rev Immunol. 2005;5(10):772–82.

    Article  CAS  PubMed  Google Scholar 

  5. Khan TA, Reddy ST. Immunological principles regulating immunomodulation with biomaterials. Acta Biomater. 2014;10(4):1720–7.

    Article  CAS  PubMed  Google Scholar 

  6. Koren E, Smith HW, Shores E, Shankar G, Finco-Kent D, Rup B, et al. Recommendations on risk-based strategies for detection and characterization of antibodies against biotechnology products. J Immunol Methods. 2008;333(1–2):1–9.

    Article  CAS  PubMed  Google Scholar 

  7. Hwang WY, Foote J. Immunogenicity of engineered antibodies. Methods. 2005;36(1):3–10.

    Article  CAS  PubMed  Google Scholar 

  8. Singh SK. Impact of product-related factors on immunogenicity of biotherapeutics. J Pharm Sci. 2011;100(2):354–87.

    Article  CAS  PubMed  Google Scholar 

  9. Stephens S, Emtage S, Vetterlein O, Chaplin L, Bebbington C, Nesbitt A, et al. Comprehensive pharmacokinetics of a humanized antibody and analysis of residual anti-idiotypic responses. Immunology. 1995;85(4):668–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Elliott P, Billingham S, Bi J, Zhang H. Quality by design for biopharmaceuticals: a historical review and guide for implementation. Pharm Bioprocess. 2013;1(1):105–22.

    Article  Google Scholar 

  11. Zurdo J, Arnell A, Obrezanova O, Smith N, Gomez de la Cuesta R, Gallagher TR, et al. Early implementation of QbD in biopharmaceutical development: a practical example. Biomed Res Int. 2015;2015:605427.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gorovits B, Clements-Egan A, Birchler M, Liang M, Myler H, Peng K, et al. Pre-existing antibody: biotherapeutic modality-based review. AAPS J. 2016:1–10.

  13. Rathore AS, Winkle H. Quality by design for biopharmaceuticals. Nat Biotechnol. 2009;27(1):26–34.

    Article  CAS  PubMed  Google Scholar 

  14. Guideline IHT. ICH Q9 quality risk management. International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use. 2005.

  15. Buttel IC, Chamberlain P, Chowers Y, Ehmann F, Greinacher A, Jefferis R, et al. Taking immunogenicity assessment of therapeutic proteins to the next level. Biologicals. 2011;39(2):100–9.

    Article  CAS  PubMed  Google Scholar 

  16. van Beers MM, Bardor M. Minimizing immunogenicity of biopharmaceuticals by controlling critical quality attributes of proteins. Biotechnol J. 2012;7(12):1473–84.

    Article  PubMed  Google Scholar 

  17. Bessa J, Boeckle S, Beck H, Buckel T, Schlicht S, Ebeling M, et al. The immunogenicity of antibody aggregates in a novel transgenic mouse model. Pharm Res. 2015;32(7):2344–59.

    Article  CAS  PubMed  Google Scholar 

  18. Folzer E, Diepold K, Bomans K, Finkler C, Schmidt R, Bulau P, et al. Selective oxidation of methionine and tryptophan residues in a therapeutic IgG1 molecule. J Pharm Sci. 2015;104(9):2824–31.

    Article  CAS  PubMed  Google Scholar 

  19. Joubert MK, Hokom M, Eakin C, Zhou L, Deshpande M, Baker MP, et al. Highly aggregated antibody therapeutics can enhance the in vitro innate and late-stage T-cell immune responses. J Biol Chem. 2012;287(30):25266–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kumar S, Mitchell MA, Rup B, Singh SK. Relationship between potential aggregation-prone regions and HLA-DR-binding T-cell immune epitopes: implications for rational design of novel and follow-on therapeutic antibodies. J Pharm Sci. 2012;101(8):2686–701.

    Article  CAS  PubMed  Google Scholar 

  21. Chung CH, Mirakhur B, Chan E, Le QT, Berlin J, Morse M, et al. Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. N Engl J Med. 2008;358(11):1109–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sinclair AM, Elliott S. Glycoengineering: the effect of glycosylation on the properties of therapeutic proteins. J Pharm Sci. 2005;94(8):1626–35.

    Article  CAS  PubMed  Google Scholar 

  23. Rosenberg AS. Effects of protein aggregates: an immunologic perspective. AAPS J. 2006;8(3):E501–7.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rombach-Riegraf V, Karle AC, Wolf B, Sorde L, Koepke S, Gottlieb S, et al. Aggregation of human recombinant monoclonal antibodies influences the capacity of dendritic cells to stimulate adaptive T-cell responses in vitro. PLoS One. 2014;9(1):e86322.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Telikepalli S, Shinogle HE, Thapa PS, Kim JH, Deshpande M, Jawa V, et al. Physical characterization and in vitro biological impact of highly aggregated antibodies separated into size-enriched populations by fluorescence-activated cell sorting. J Pharm Sci. 2015;104(5):1575–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Moussa EM, Panchal JP, Moorthy BS, Blum JS, Joubert MK, Narhi LO, et al. Immunogenicity of therapeutic protein aggregates. J Pharm Sci. 2016;105(2):417–30.

    Article  CAS  PubMed  Google Scholar 

  27. Flower DR. Towards in silico prediction of immunogenic epitopes. Trends Immunol. 2003;24(12):667–74.

    Article  CAS  PubMed  Google Scholar 

  28. Jawa V, Cousens LP, Awwad M, Wakshull E, Kropshofer H, De Groot AS. T-cell dependent immunogenicity of protein therapeutics: preclinical assessment and mitigation. Clin Immunol. 2013;149(3):534–55.

    Article  CAS  PubMed  Google Scholar 

  29. Bryson CJ, Jones TD, Baker MP. Prediction of immunogenicity of therapeutic proteins: validity of computational tools. BioDrugs. 2010;24(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  30. Onda M. Reducing the immunogenicity of protein therapeutics. Curr Drug Targets. 2009;10(2):131–9.

    Article  CAS  PubMed  Google Scholar 

  31. Wang X, Das TK, Singh SK, Kumar S. Potential aggregation prone regions in biotherapeutics: a survey of commercial monoclonal antibodies. MAbs. 2009;1(3):254–67.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kumar S, Singh SK, Wang X, Rup B, Gill D. Coupling of aggregation and immunogenicity in biotherapeutics: T- and B-cell immune epitopes may contain aggregation-prone regions. Pharm Res. 2011;28(5):949–61.

    Article  CAS  PubMed  Google Scholar 

  33. Lazarski CA, Chaves FA, Sant AJ. The impact of DM on MHC class II-restricted antigen presentation can be altered by manipulation of MHC-peptide kinetic stability. J Exp Med. 2006;203(5):1319–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Szabo TG, Palotai R, Antal P, Tokatly I, Tothfalusi L, Lund O, et al. Critical role of glycosylation in determining the length and structure of T cell epitopes. Immunome Res. 2009;5:4.

    Article  PubMed  PubMed Central  Google Scholar 

  35. van Haren SD, Herczenik E, ten Brinke A, Mertens K, Voorberg J, Meijer AB. HLA-DR-presented peptide repertoires derived from human monocyte-derived dendritic cells pulsed with blood coagulation factor VIII. Mol Cell Proteomics. 2011;10(6):M110 002246.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Giese C, Lubitz A, Demmler CD, Reuschel J, Bergner K, Marx U. Immunological substance testing on human lymphatic micro-organoids in vitro. J Biotechnol. 2010;148(1):38–45.

    Article  CAS  PubMed  Google Scholar 

  37. Holgate RG, Weldon R, Jones TD, Baker MP. Characterisation of a novel anti-CD52 antibody with improved efficacy and reduced immunogenicity. PLoS One. 2015;10(9):e0138123.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Jaber A, Baker M. Assessment of the immunogenicity of different interferon beta-1a formulations using ex vivo T-cell assays. J Pharm Biomed Anal. 2007;43(4):1256–61.

    Article  CAS  PubMed  Google Scholar 

  39. Delluc S, Ravot G, Maillere B. Quantitative analysis of the CD4 T-cell repertoire specific to therapeutic antibodies in healthy donors. FASEB J. 2011;25(6):2040–8.

    Article  CAS  PubMed  Google Scholar 

  40. Wullner D, Zhou L, Bramhall E, Kuck A, Goletz TJ, Swanson S, et al. Considerations for optimization and validation of an in vitro PBMC derived T cell assay for immunogenicity prediction of biotherapeutics. Clin Immunol. 2010;137(1):5–14.

    Article  CAS  PubMed  Google Scholar 

  41. Giovannoni G, Barbarash O, Casset-Semanaz F, Jaber A, King J, Metz L, et al. Immunogenicity and tolerability of an investigational formulation of interferon-beta1a: 24- and 48-week interim analyses of a 2-year, single-arm, historically controlled, phase IIIb study in adults with multiple sclerosis. Clin Ther. 2007;29(6):1128–45.

    Article  CAS  PubMed  Google Scholar 

  42. Collin M, McGovern N, Haniffa M. Human dendritic cell subsets. Immunology. 2013;140(1):22–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lutz MB, Schuler G. Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol. 2002;23(9):445–9.

    Article  CAS  PubMed  Google Scholar 

  44. Penna G, Amuchastegui S, Laverny G, Adorini L. Vitamin D receptor agonists in the treatment of autoimmune diseases: selective targeting of myeloid but not plasmacytoid dendritic cells.

  45. Carreno LJ, Riedel CA, Kalergis AM. Induction of tolerogenic dendritic cells by NF-kappaB blockade and Fcgamma receptor modulation. Methods Mol Biol. 2011;677:339–53.

    Article  CAS  PubMed  Google Scholar 

  46. Sule G, Suzuki M, Guse K, Cela R, Rodgers JR, Lee B. Cytokine-conditioned dendritic cells induce humoral tolerance to protein therapy in mice. Hum Gene Ther. 2012;23(7):769–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fathallah AM, Ramakrishnan R, Balu-Iyer SV. O-phospho-l-serine mediates hyporesponsiveness toward FVIII in hemophilia A-murine model by inducing tolerogenic properties in dendritic cells. J Pharm Sci. 2014;103(11):3457–63.

    Article  CAS  PubMed  Google Scholar 

  48. Charbonnier LM, van Duivenvoorde LM, Apparailly F, Cantos C, Han WG, Noel D, et al. Immature dendritic cells suppress collagen-induced arthritis by in vivo expansion of CD49b+ regulatory T cells. J Immunol. 2006;177(6):3806–13.

    Article  CAS  PubMed  Google Scholar 

  49. Raker VK, Domogalla MP, Steinbrink K. Tolerogenic dendritic cells for regulatory T cell induction in man. Front Immunol. 2015;6:569.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9(5):313–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Coombes JL, Powrie F. Dendritic cells in intestinal immune regulation. Nat Rev Immunol. 2008;8(6):435–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Varshney P, Jones SM, Scurlock AM, Perry TT, Kemper A, Steele P, et al. A randomized controlled study of peanut oral immunotherapy: clinical desensitization and modulation of the allergic response. J Allergy Clin Immunol. 2011;127(3):654–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Verma D, Moghimi B, LoDuca PA, Singh HD, Hoffman BE, Herzog RW, et al. Oral delivery of bioencapsulated coagulation factor IX prevents inhibitor formation and fatal anaphylaxis in hemophilia B mice. Proc Natl Acad Sci U S A. 2010;107(15):7101–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sherman A, Su J, Lin S, Wang X, Herzog RW, Daniell H. Suppression of inhibitor formation against FVIII in a murine model of hemophilia A by oral delivery of antigens bioencapsulated in plant cells. Blood. 2014;124(10):1659–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Su J, Sherman A, Doerfler PA, Byrne BJ, Herzog RW, Daniell H. Oral delivery of Acid Alpha Glucosidase epitopes expressed in plant chloroplasts suppresses antibody formation in treatment of Pompe mice. Plant Biotechnol J. 2015;13(8):1023–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Oliveira RP, Santiago AF, Ficker SM, Gomes-Santos AC, Faria AM. Antigen administration by continuous feeding enhances oral tolerance and leads to long-lasting effects. J Immunol Methods. 2015;421:36–43.

    Article  CAS  PubMed  Google Scholar 

  57. Friedman A, Weiner HL. Induction of anergy or active suppression following oral tolerance is determined by antigen dosage. Proc Natl Acad Sci U S A. 1994;91(14):6688–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Weiner HL, da Cunha AP, Quintana F, Wu H. Oral tolerance. Immunol Rev. 2011;241(1):241–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gray M, Gray D. Regulatory B cells mediate tolerance to apoptotic self in health: implications for disease. Int Immunol. 2015;27(10):505–11.

    Article  CAS  PubMed  Google Scholar 

  60. Gaitonde P, Ramakrishnan R, Chin J, Kelleher Jr RJ, Bankert RB, Balu-Iyer SV. Exposure to factor VIII protein in the presence of phosphatidylserine induces hypo-responsiveness toward factor VIII challenge in hemophilia A mice. J Biol Chem. 2013;288(24):17051–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lorentz KM, Kontos S, Diaceri G, Henry H, Hubbell JA. Engineered binding to erythrocytes induces immunological tolerance to E. coli asparaginase. Sci Adv. 2015;1(6):e1500112.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lee RA, Gabardi S. Current trends in immunosuppressive therapies for renal transplant recipients. Am J Health Syst Pharm. 2012;69(22):1961–75.

    Article  CAS  PubMed  Google Scholar 

  63. Meffre E, Wardemann H. B-cell tolerance checkpoints in health and autoimmunity. Curr Opin Immunol. 2008;20(6):632–8.

    Article  CAS  PubMed  Google Scholar 

  64. Galibert L, Burdin N, Barthelemy C, Meffre G, Durand I, Garcia E, et al. Negative selection of human germinal center B cells by prolonged BCR cross-linking. J Exp Med. 1996;183(5):2075–85.

    Article  CAS  PubMed  Google Scholar 

  65. Witmer C, Young G. Factor VIII inhibitors in hemophilia A: rationale and latest evidence. Ther Adv Hematol. 2013;4(1):59–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fulcher CA, de Graaf Mahoney S, Zimmerman TS. FVIII inhibitor IgG subclass and FVIII polypeptide specificity determined by immunoblotting. Blood. 1987;69(5):1475–80.

    CAS  PubMed  Google Scholar 

  67. Kempton CL, White 2nd GC. How we treat a hemophilia A patient with a factor VIII inhibitor. Blood. 2009;113(1):11–7.

    Article  CAS  PubMed  Google Scholar 

  68. Banugaria SG, Patel TT, Mackey J, Das S, Amalfitano A, Rosenberg AS, et al. Persistence of high sustained antibodies to enzyme replacement therapy despite extensive immunomodulatory therapy in an infant with Pompe disease: need for agents to target antibody-secreting plasma cells. Mol Genet Metab. 2012;105(4):677–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gagnon RF, MacLennan IC. The effect of chronic daily cyclophosphamide administration on established antibody responses. Clin Exp Immunol. 1981;46(1):178–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Garman RD, Munroe K, Richards SM. Methotrexate reduces antibody responses to recombinant human alpha-galactosidase A therapy in a mouse model of Fabry disease. Clin Exp Immunol. 2004;137(3):496–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Garces S, Demengeot J, Benito-Garcia E. The immunogenicity of anti-TNF therapy in immune-mediated inflammatory diseases: a systematic review of the literature with a meta-analysis. Ann Rheum Dis. 2013;72(12):1947–55.

    Article  CAS  PubMed  Google Scholar 

  72. Allison AC, Eugui EM. Mycophenolate mofetil and its mechanisms of action. Immunopharmacology. 2000;47(2–3):85–118.

    Article  CAS  PubMed  Google Scholar 

  73. Klarmann D, Martinez Saguer I, Funk MB, Knoefler R, von Hentig N, Heller C, et al. Immune tolerance induction with mycophenolate-mofetil in two children with haemophilia B and inhibitor. Haemophilia. 2008;14(1):44–9.

    Article  CAS  PubMed  Google Scholar 

  74. Lederer SR, Friedrich N, Banas B, Welser G, Albert ED, Sitter T. Effects of mycophenolate mofetil on donor-specific antibody formation in renal transplantation. Clin Transpl. 2005;19(2):168–74.

    Article  Google Scholar 

  75. Joseph A, Munroe K, Housman M, Garman R, Richards S. Immune tolerance induction to enzyme-replacement therapy by co-administration of short-term, low-dose methotrexate in a murine Pompe disease model. Clin Exp Immunol. 2008;152(1):138–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ohashi T, Iizuka S, Shimada Y, Higuchi T, Eto Y, Ida H, et al. Administration of anti-CD3 antibodies modulates the immune response to an infusion of alpha-glucosidase in mice. Mol Ther. 2012;20(10):1924–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Waters B, Qadura M, Burnett E, Chegeni R, Labelle A, Thompson P, et al. Anti-CD3 prevents factor VIII inhibitor development in hemophilia A mice by a regulatory CD4+CD25+-dependent mechanism and by shifting cytokine production to favor a Th1 response. Blood. 2009;113(1):193–203.

    Article  CAS  PubMed  Google Scholar 

  78. Collins PW. Therapeutic challenges in acquired factor VIII deficiency. Hematology Am Soc Hematol Educ Program. 2012;2012:369–74.

    PubMed  Google Scholar 

  79. Banugaria SG, Prater SN, McGann JK, Feldman JD, Tannenbaum JA, Bailey C, et al. Bortezomib in the rapid reduction of high sustained antibody titers in disorders treated with therapeutic protein: lessons learned from Pompe disease. Genet Med. 2013;15(2):123–31.

    Article  CAS  PubMed  Google Scholar 

  80. Elder ME, Nayak S, Collins SW, Lawson LA, Kelley JS, Herzog RW, et al. B-cell depletion and immunomodulation before initiation of enzyme replacement therapy blocks the immune response to acid alpha-glucosidase in infantile-onset Pompe disease. J Pediatr. 2013;163(3):847–54 e1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kakkis E, Lester T, Yang R, Tanaka C, Anand V, Lemontt J, et al. Successful induction of immune tolerance to enzyme replacement therapy in canine mucopolysaccharidosis I. Proc Natl Acad Sci U S A. 2004;101(3):829–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Doerfler PA, Nayak S, Herzog RW, Morel L, Byrne BJ. BAFF blockade prevents anti-drug antibody formation in a mouse model of Pompe disease. Clin Immunol. 2015;158(2):140–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chatham WW, Wallace DJ, Stohl W, Latinis KM, Manzi S, McCune WJ, et al. Effect of belimumab on vaccine antigen antibodies to influenza, pneumococcal, and tetanus vaccines in patients with systemic lupus erythematosus in the BLISS-76 trial. J Rheumatol. 2012;39(8):1632–40.

    Article  CAS  PubMed  Google Scholar 

  84. Joly MS, Martin RP, Mitra-Kaushik S, Phillips L, D’Angona A, Richards SM, et al. Transient low-dose methotrexate generates B regulatory cells that mediate antigen-specific tolerance to alglucosidase alfa. J Immunol. 2014;193(8):3947–58.

    Article  CAS  PubMed  Google Scholar 

  85. Joseph A, Neff K, Richard J, Gao L, Bangari D, Joly M, et al. Transient low-dose methotrexate induces tolerance to murine anti-thymocyte globulin and together they promote long-term allograft survival. J Immunol. 2012;189(2):732–43.

    Article  CAS  PubMed  Google Scholar 

  86. Iwata Y, Matsushita T, Horikawa M, Dilillo DJ, Yanaba K, Venturi GM, et al. Characterization of a rare IL-10-competent B-cell subset in humans that parallels mouse regulatory B10 cells. Blood. 2011;117(2):530–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Becker C, Bopp T, Jonuleit H. Boosting regulatory T cell function by CD4 stimulation enters the clinic. Front Immunol. 2012;3:164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mayer CT, Tian L, Hesse C, Kuhl AA, Swallow M, Kruse F, et al. Anti-CD4 treatment inhibits autoimmunity in scurfy mice through the attenuation of co-stimulatory signals. J Autoimmun. 2014;50:23–32.

    Article  CAS  PubMed  Google Scholar 

  89. Abraham RT, Wiederrecht GJ. Immunopharmacology of rapamycin. Annu Rev Immunol. 1996;14:483–510.

    Article  CAS  PubMed  Google Scholar 

  90. Benjamin D, Colombi M, Moroni C, Hall MN. Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat Rev Drug Discov. 2011;10(11):868–80.

    Article  CAS  PubMed  Google Scholar 

  91. Weichhart T, Saemann MD. The multiple facets of mTOR in immunity. Trends Immunol. 2009;30(5):218–26.

    Article  CAS  PubMed  Google Scholar 

  92. Thomson AW, Turnquist HR, Raimondi G. Immunoregulatory functions of mTOR inhibition. Nat Rev Immunol. 2009;9(5):324–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Delgoffe GM, Kole TP, Zheng Y, Zarek PE, Matthews KL, Xiao B, et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity. 2009;30(6):832–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Delgoffe GM, Pollizzi KN, Waickman AT, Heikamp E, Meyers DJ, Horton MR, et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat Immunol. 2011;12(4):295–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kang J, Huddleston SJ, Fraser JM, Khoruts A. De novo induction of antigen-specific CD4+CD25+Foxp3+ regulatory T cells in vivo following systemic antigen administration accompanied by blockade of mTOR. J Leukoc Biol. 2008;83(5):1230–9.

    Article  CAS  PubMed  Google Scholar 

  96. Wekerle T. T-regulatory cells—what relationship with immunosuppressive agents? Transplant Proc. 2008;40(10 Suppl):S13–6.

    Article  CAS  PubMed  Google Scholar 

  97. Zhang S, Readinger JA, DuBois W, Janka-Junttila M, Robinson R, Pruitt M, et al. Constitutive reductions in mTOR alter cell size, immune cell development, and antibody production. Blood. 2011;117(4):1228–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Li X, Li JJ, Yang JY, Wang DS, Zhao W, Song WJ, et al. Tolerance induction by exosomes from immature dendritic cells and rapamycin in a mouse cardiac allograft model. PLoS One. 2012;7(8):e44045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Nayak S, Cao O, Hoffman BE, Cooper M, Zhou S, Atkinson MA, et al. Prophylactic immune tolerance induced by changing the ratio of antigen-specific effector to regulatory T cells. J Thromb Haemost. 2009;7(9):1523–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Moghimi B, Sack BK, Nayak S, Markusic DM, Mah CS, Herzog RW. Induction of tolerance to factor VIII by transient co-administration with rapamycin. J Thromb Haemost. 2011;9(8):1524–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Maldonado RA, LaMothe RA, Ferrari JD, Zhang AH, Rossi RJ, Kolte PN, et al. Polymeric synthetic nanoparticles for the induction of antigen-specific immunological tolerance. Proc Natl Acad Sci U S A. 2015;112(2):E156–65.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was sponsored by the Therapeutic Product Immunogenicity Focus Group (TPIFG) of the BIOTEC Section, American Association of Pharmaceutical Scientists. Special thanks to Gopi Shankar and the TPIFG steering committee for their valuable feedback on the content of the manuscript and their support on the publication of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura I. Salazar-Fontana.

Additional information

Guest Editors: Alexandra Joseph, Vibha Jawa, and Shibani Mitra-Kaushik

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salazar-Fontana, L.I., Desai, D.D., Khan, T.A. et al. Approaches to Mitigate the Unwanted Immunogenicity of Therapeutic Proteins during Drug Development. AAPS J 19, 377–385 (2017). https://doi.org/10.1208/s12248-016-0030-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-016-0030-z

KEY WORDS

Navigation