Skip to main content

Advertisement

Log in

Physicochemical and Formulation Developability Assessment for Therapeutic Peptide Delivery—A Primer

  • Review Article
  • Theme: Preclinical Peptide Developability Assessment
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Peptides are an important class of endogenous ligands that regulate key biological cascades. As such, peptides represent a promising therapeutic class with the potential to alleviate many severe disease states. Despite their therapeutic potential, peptides frequently pose drug delivery challenges to scientists. This review introduces the physicochemical, biophysical, biopharmaceutical, and formulation developability aspects of peptides pertinent to the drug discovery-to-development interface. It introduces the relevance of these properties with respect to the delivery modalities available for peptide pharmaceuticals, with the parenteral route being the most prevalent route of administration. This review also presents characterization strategies for oral delivery of peptides with the aim of illuminating developability issues with the drug candidate. A brief overview of other routes of administration, including inhaled, transdermal, and intranasal routes, is provided as these routes are generally preferred by patients over injectables. Finally, this review presents formulation techniques to mitigate some of the developability obstacles associated with peptide delivery. The authors emphasize opportunities for the thoughtful application of pharmaceutical science to the development of peptide drugs and to the general advancement of this promising class of pharmaceuticals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Craik DJ, Fairlie DP, Liras S, Price D. The future of peptide-based drugs. Chem Biol Drug Des. 2013;81(1):136–47.

    CAS  PubMed  Google Scholar 

  2. Bruno BJ, Miller GD, Lim CS. Basics and recent advances in peptide and protein drug delivery. Ther Deliv. 2013;4(11):1443–67.

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Antosova Z, Mackova M, Kral V, Macek T. Therapeutic application of peptides and proteins: parenteral forever? Trends Biotechnol. 2009;27(11):628–35.

    CAS  PubMed  Google Scholar 

  4. Sharma JPK, Bansal S, Banik A. Noninvasive routes of proteins and peptides drug delivery. Indian J Pharm Sci. 2011;73(4):367–75.

    PubMed Central  PubMed  Google Scholar 

  5. Transparency Market Research. Peptide therapeutics market—global industry analysis, size, share, growth, trends and forecast 2012–2018. Report; 2013. http://www.transparencymarketresearch.com/peptide-therapeutics-market.html.

  6. Payne RW, Manning MC. Peptide formulation: challenges and strategies. Innov Pharm Technol. 2009;28:64–8.

    CAS  Google Scholar 

  7. Ohtake S, Kita Y, Payne R, Manning M, Arakawa T. Structural characteristics of short peptides in solution. Protein Pept Lett. 2013;20(12):1308–23.

    CAS  PubMed  Google Scholar 

  8. Patel A, Cholkar K, Mitra AK. Recent developments in protein and peptide parenteral delivery approaches. Ther Deliv. 2014;5(3):337–65.

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Brazeau GA, Cooper B, Svetic KA, Smith CL, Gupta P. Current perspectives on pain upon injection of drugs. J Pharm Sci. 1998;87(6):667–77.

    CAS  PubMed  Google Scholar 

  10. Manning MC, Chou DK, Murphy BM, Payne RW, Katayama DS. Stability of protein pharmaceuticals: an update. Pharm Res. 2010;27(4):544–75.

  11. Cleland JL, Powell MF, Shire SJ. The development of stable protein formulations: a close look at protein aggregation, deamidation, and oxidation. Crit Rev Ther Drug Carrier Syst. 1993;10(4):307–77.

    CAS  PubMed  Google Scholar 

  12. Capasso S, Mazzarella L, Zagari A. Deamidation via cyclic imide of asparaginyl peptides: dependence on salts, buffers, and organic solvents. Pept Res. 1991;4(4):234–8.

    CAS  PubMed  Google Scholar 

  13. Jang SW, Wo BH, Lee JT, Moon SC, Lee KC, DeLuca PP. Stability of octastatin, a somatostatin analog cyclic octapeptide, in aqueous solution. Pharm Dev Technol. 1997;2(4):409–14.

    CAS  PubMed  Google Scholar 

  14. Houchin ML, Neuenswander SA, Topp EM. Effect of excipients on PLGA film degradation and the stability of an incorporated peptide. J Control Release. 2007;117(3):413–20.

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Beals JM, DeFelippis MR, Kovach PM. Insulin. In: Crommelin DJA, Sindelar RD, Meibohm B, editors. Pharmaceutical biotechnology fundamentals and applications. 3rd ed. New York: Informa Healthcare USA, Inc; 2008. p. 265–80.

    Google Scholar 

  16. DeFelippis MR, Chance RE, Frank BH. Insulin self-association and the relationship to pharmacokinetics and pharmacodynamics. Crit Rev Ther Drug Carrier Syst. 2001;18(2):201–64.

    CAS  PubMed  Google Scholar 

  17. Kelly RN, Lerke SA. Particle size measurement technique selection within method development in the pharmaceutical industry. Am Pharm Rev. 2005;8:72–81.

    CAS  Google Scholar 

  18. Xiao B, Tarricone C, Lin K, Kelly G, Justin N. Optimizing protein complexes for crystal growth. Cryst Growth Des. 2007;7:2213–8.

    CAS  Google Scholar 

  19. Wang YCJ, Hanson MA. Parenteral formulations of proteins and peptides: stability and stabilizers. PDA Technical Report Parenteral Drug Association. 1988.

  20. Wei W. Instability, stabilization, and formulation of liquid protein pharmaceuticals. Int J Pharm. 1999;185(2):129–88.

    Google Scholar 

  21. Akers MJ, DeFelippis MR. Peptides and proteins as parenteral solutions. In: Hovgaard L, Frokjaer S, van de Weert M, editors. Pharmaceutical formulation development of peptides and proteins. 2nd ed. Boca Raton: Taylor & Francis Group, LLC; 2012. p. 150–92.

    Google Scholar 

  22. ICH. Stability Q1A-Q1F. [cited; Available from: http://www.ich.org/products/guidelines/quality/article/quality-guidelines.html.

  23. Parkins DA, Lashmar UT. The formulation of biopharmaceutical products. Pharm Sci Technol Today. 2000;3(4):129–37.

    CAS  PubMed  Google Scholar 

  24. Wang W. Instability, stabilization, and formulation of liquid protein pharmaceuticals. Int J Pharm. 1999;185(2):129–88.

    CAS  PubMed  Google Scholar 

  25. Fransson JR, Hagman A. Oxidation of human insulin-like growth factor I in formulation studies, II. Effects of oxygen, visible light, and phosphate on methionine oxidation in aqueous solution and evaluation of possible mechanisms. Pharm Res. 1996;13(10):1476–81.

    CAS  PubMed  Google Scholar 

  26. Li S, Schoneich C, Borchardt RT. Chemical instability of protein pharmaceuticals: mechanisms of oxidation and strategies for stabilization. Biotechnol Bioeng. 1995;48(5):490–500.

    CAS  PubMed  Google Scholar 

  27. Li S, Schoneich C, Borchardt RT. Chemical pathways of peptide degradation. VIII. Oxidation of methionine in small model peptides by prooxidant/transition metal ion systems: influence of selective scavengers for reactive oxygen intermediates. Pharm Res. 1995;12(3):348–55.

    PubMed  Google Scholar 

  28. Herman AC, Boone TC, Lu HS. Characterization, formulation, and stability of Neupogen(R) (Filgrastim), a recombinant human granulocyte-colony stimulating factor. In: Pearlman R, Want YJ, editors. Formulation, characterization, and stability of protein drugs: case histories. New York: Plenum Press; 1996. p. 324–5.

    Google Scholar 

  29. Knepp VM, Whatley JL, Muchnik A, Calderwood TS. Identification of antioxidants for prevention of peroxide-mediated oxidation of recombinant human ciliary neurotrophic factor and recombinant human nerve growth factor. PDA J Pharm Sci Technol. 1996;50(3):163–71.

    CAS  PubMed  Google Scholar 

  30. Lam XM, Lai WG, Chan EK, Ling V, Hsu CC. Site-specific tryptophan oxidation induced by autocatalytic reaction of polysorbate 20 in protein formulation. Pharm Res. 2011;28(10):2543–55.

    CAS  PubMed  Google Scholar 

  31. Li S, Schoneich C, Wilson GS, Borchardt RT. Chemical pathways of peptide degradation. V. Ascorbic acid promotes rather than inhibits the oxidation of methionine to methionine sulfoxide in small model peptides. Pharm Res. 1993;10(11):1572–9.

    CAS  PubMed  Google Scholar 

  32. Akers MJ. Antioxidants in pharmaceutical products. J Parenter Sci Technol. 1992;36(5):222–8.

    Google Scholar 

  33. Harwood RJ, Portnoff JB, Sunbery EW. The processing of small volume parenterals and related sterile products. In: Avis KE, Lieberman HA, Lachaman L, editors. Pharmaceutical dosage forms: parenteral medications. New York: Marcel Dekker; 1993. p. 70–3.

    Google Scholar 

  34. Kerwin BA, Remmele Jr RL. Protect from light: photodegradation and protein biologics. J Pharm Sci. 2007;96(6):1468–79.

    CAS  PubMed  Google Scholar 

  35. Brange J, Langkjaer L. Insulin Structure and stability. In: Wang YJ, Pearlman R, editors. Stability and characterization of protein and peptide drugs: case histories. New York: Plenum Press; 1993. p. 315–50.

    Google Scholar 

  36. Brange J, Havelund S, Hougaard P. Chemical stability of insulin. 2. Formation of higher molecular weight transformation products during storage of pharmaceutical preparations. Pharm Res. 1992;9(6):727–34.

    CAS  PubMed  Google Scholar 

  37. Mitraki A, King J. Protein folding intermediates and inclusion body formation. Nat Biotechnol. 1989;7:1491–5.

    Google Scholar 

  38. Shahrokh Z, Eberlein G, Wang YJ. Probing the conformation of protein (bFGF) precipitates by fluorescence spectroscopy. J Pharm Biomed Anal. 1994;12(8):1035–41.

    CAS  PubMed  Google Scholar 

  39. Silvestri S, Lu MY, Johnson H. Kinetics and mechanisms of peptide aggregation. I: Aggregation of a cholecystokinin analogue. J Pharm Sci. 1993;82(7):689–93.

    CAS  PubMed  Google Scholar 

  40. Rathore N, Rajan R. Current perspectives on stability of protein drug products during formulation, fill, and finish operations. Biotechnol Prog. 2008;24(3):504–14.

    CAS  PubMed  Google Scholar 

  41. Maggio E. Use of excipients to control aggregation in peptide and protein formulations. J Excip Food Chem. 2010;1(2):40–9.

    CAS  Google Scholar 

  42. Allwood MC. The effectiveness of preservatives in insulin injections. Pharm J. 1982;229:340.

    CAS  Google Scholar 

  43. O’Neill JJ, Mead CA. The parabens: bacterial adaptation and preservative capacity. J Soc Cosmet Chem. 1982;33(2):75–84.

    Google Scholar 

  44. Denyer SP, Wallhaeusser K-H. Antimicrobial preservatives and their properties. In: Denyer SP, Baird RM, editors. Guide to microbiological control in pharmaceuticals. England: Ellis Horwood Limited; 1990. p. 251–73.

    Google Scholar 

  45. Pinholt C, Hartvig RA, Medicott NJ, Jorgensen L. The importance of interfaces in protein drug delivery—why is protein adsorption of interest in pharmaceutical formulations? Expert Opin Drug Deliv. 2011;8(7):949–64.

    CAS  PubMed  Google Scholar 

  46. Anik ST, Hwang JY. Adsoption of D-Nal(2) 6LHRH, a decapeptide, onto glass and other surfaces. Int J Pharm. 1983;16(2):181–90.

    CAS  Google Scholar 

  47. Dong DE, Andrade JD, Coleman DL. Adsorption of low density lipoproteins onto selected biomedical polymers. J Biomed Mater Res. 1987;21(6):683–700.

    CAS  PubMed  Google Scholar 

  48. Hirsch JI, Fratkin MJ, Wood JH, Thomas RB. Clinical significance of insulin adsorption by polyvinyl chloride infusion systems. Am J Hosp Pharm. 1977;34(6):583–8.

    CAS  PubMed  Google Scholar 

  49. Johnston TP. Adsorption of recombinant human granulocyte colony stimulating factor (rhG-CSF) to polyvinyl chloride, polypropylene, and glass: effect of solvent additives. PDA J Pharm Sci Technol. 1996;50(4):238–45.

    CAS  PubMed  Google Scholar 

  50. Schwarzenbach MS, Reimann P, Thommen V, Hegner M, Mumenthaler M, Schweb J, et al. Interferon alpha-2a interactions on glass vial surfaces measured by atomic force microscopy. PDA J Pharm Sci Technol. 2002;56(2):78–89.

    CAS  PubMed  Google Scholar 

  51. Oshima G. Solid surface-catalysed inactivation of bovine alpha-chymotrypsin in dilute solution. Int J Biol Macromol. 1989;11(1):43–8.

    CAS  PubMed  Google Scholar 

  52. Chuang VT, Kragh-Hansen U, Otagiri M. Pharmaceutical strategies utilizing recombinant human serum albumin. Pharm Res. 2002;19(5):569–77.

    PubMed  Google Scholar 

  53. Meckenzie IZ. Induction of labour at the start of the new millennium. Reproduction. 2006;131:989–98.

    Google Scholar 

  54. van Dongen PWJ, van Roosmalen J, de Boer CN, van Rooy RJ. Oxytocics for the prevention of postpartum haemorrhages, a review. Pharm Weekbl Sci. 1991;13:238–43.

    PubMed  Google Scholar 

  55. Hogerzeil HV, Walker GJA, de Goeje MJ. Stability of injectable oxytocics in tropical climates. WHO Report. 1993;WHO/DAP/93.6.

  56. Nachtmann F, Krummen K, Maxl F, Reimer E. Oxytocin. Analytical profiles of drug substances. Anal Prof Drug Subst. 1981;10:563–600.

    CAS  Google Scholar 

  57. Wisniewski K, Finnman J, Flipo M, Galyean R, Schteingart CD. On the mechanism of degradation of oxytocin and its analogues in aqueous solution. Biopolymers. 2013;100(4):408–21.

    PubMed  Google Scholar 

  58. Hawe A, Poole R, Romeijn S, Kasper P, van der Heijden R, Jiskoot W. Towards heat-stable oxytocin formulations: analysis of degradation kinetics and identification of degradation products. Pharm Res. 2009;26(7):1679–88.

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Avanti C, Amorij J-P, Setyaningsih D, Hawe A, Jiskoot W, Visser J, et al. A new strategy to stabilize oxytocin in aqueous solutions: I. The effects of divalent metal ions and citrate buffer. AAPS J. 2011;13(2):284–90.

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Avanti C, Permentier HP, van Dam A, Poole R, Jiskoot W, Frijlink HW, et al. A new strategy to stabilize oxytocin in aqueous solutions: II. Suppression of cysteine-mediated intermolecular reactions by a combination of divalent metal ions and citrate. Mol Pharm. 2012;9(3):554–62.

    CAS  PubMed  Google Scholar 

  61. Avanti C, Oktaviani NA, Hinrichs WLJ, Frijlink HW, Mulder FAA. Aspartate buffer and divalent metal ions affect oxytocin in aqueous solution and protect it from degradation. Int J Pharm. 2013;444(1–2):139–45.

    CAS  PubMed  Google Scholar 

  62. Malm M, Nilsson A, Siekmann B, Wisniewski K, inventors; Ferring B.V., assignee. Pharmaceutical composition. Patent WO 2012042371 A2. 2012 April 5.

  63. Beauchesne PR, Chung NSC, Warsan KM. Cyclosporine A: a review of current oral and intravenous delivery systems. Drug Dev Ind Pharm. 2007;33(3):211–20.

    CAS  PubMed  Google Scholar 

  64. Czogalla A. Oral cyclosporine A—the current picture of its liposomal and other delivery systems. Cell Mol Biol Lett. 2008;14(1):139–52.

    PubMed  Google Scholar 

  65. Ritschel WA. Microemulsion technology in the reformulation of cyclosporine: the reason behind the pharmacokinetic properties of Neoral. Clin Transpl. 1996;10(4):364–73.

    CAS  Google Scholar 

  66. Bak A, McGregor C, Templeton A. Scientific risk assessment strategies for managing the transition from discovery to development. AAPS Newsmag. 2010.

  67. Bak A. Physicochemical and formulation risk assessment for subcutaneous peptide delivery. AAPS Annual Meeting and Exposition. San Antonio; 2013.

  68. Christensen S, Horn Moeller E, Bonde C, Lilleoere AM. Preliminary studies of the physical stability of a glucagon-like peptide-1 derivate in the presence of metal ions. Eur J Pharm Biopharm. 2007;66(3):366–71.

    CAS  PubMed  Google Scholar 

  69. Graf A, Jack KS, Whittaker AK, Hook SM, Rades T. Protein delivery using nanoparticles based on microemulsions with different structure-types. Eur J Pharm Sci. 2008;33(4–5):434–44.

    CAS  PubMed  Google Scholar 

  70. Wolk C, Drescher S, Meister A, Blume A, Langner A, Dobner B. General synthesis and physicochemical characterisation of a series of peptide-mimic lysine-based amino-functionalised lipids. Chem Eur J. 2013;19(38):12824–38.

    PubMed  Google Scholar 

  71. Agrawal AK, Harde H, Thanki K, Jain S. Improved stability and antidiabetic potential of insulin containing folic acid functionalized polymer stabilized multilayered liposomes following oral administration. Biomacromolecules. 2014;15(1):350–60.

    CAS  PubMed  Google Scholar 

  72. Carafa M, Marianecci C, Annibaldi V, Di Stefano A, Sozio P. Novel O-palmitoylscleroglucan-coated liposomes as drug carriers. Int J Pharm. 2006;325(1–2):155–62.

    CAS  PubMed  Google Scholar 

  73. Chen C, Fan T, Jin Y, Zhou Z, Yang Y, Zhu X. Orally delivered salmon calcitonin-loaded solid lipid nanoparticles. Nanomedicine. 2013;8(7):1085–100.

    CAS  PubMed  Google Scholar 

  74. Paterson AD, Conradi RA, Hilgers AR, Vidmar TJ, Burton PS. A non-aqueous partitioning system for predicting the oral absorption potential of peptides. Quant Struct-Act Rel. 1994;13(4):4–10.

    CAS  Google Scholar 

  75. Sandhya KW, Devi GS, Mathew ST. Liposomal formulations of serratiopeptidase: in vitro studies using PAMPA and Caco-2 models. Mol Pharm. 2008;5(1):92–7.

    Google Scholar 

  76. Gu C-H, Li L, Levons J, Lentz K, Gandhi RB, Raghavan K, et al. Predicting effect of food on extent of drug absorption based on physicochemical properties. Pharm Res. 2007;24(6):1118–30.

    CAS  PubMed  Google Scholar 

  77. Karsdal MA, Henriksen K, Bay-Jensen AC, Molloy B, Arnold M, John MR, et al. Lessons learned from the development of oral calcitonin: the first tablet formulation of a protein in phase III clinical trials. J Clin Pharm. 2011;51(4):460–71.

    CAS  Google Scholar 

  78. Marais E, Hamman J, du Plessis L, Lemmer R, Steenekamp J. Eudragit® L100/N-trimethylchitosan chloride microspheres for oral insulin delivery. Molecules (Basel, Switzerland). 2013;18(6):6734–47.

    CAS  Google Scholar 

  79. Cui X, Cao D, Zhang X, Zheng A. A study of the chemical and biological stability of vasoactive intestinal peptide. Drug Dev Ind Pharm. 2013;39(12):1907–10.

    CAS  PubMed  Google Scholar 

  80. Mehta NM. Oral delivery and recombinant production of peptide hormones part I. Biopharm Int. 2004;17(6):38–43.

    CAS  Google Scholar 

  81. Langguth P, Bohner V, Heizmann J, Merkle HP, Wolffram S. The challenge of proteolytic enzymes in intestinal peptide delivery. J Control Release. 1997;46(1–2):39–57.

    CAS  Google Scholar 

  82. Fuhrmann G, Leroux J-C. In vitro evaluation of the stability of proline-specific endopeptidases. J Control Release. 2010;148(1):e37–9.

    CAS  PubMed  Google Scholar 

  83. Kahns AH, Bundgaard H. Facile α-chymotrypsin-catalyzed degradation of the HIV inhibitor [d-Ala1]-peptide T amide. Int J Pharm. 1991;77(1):65–70.

    CAS  Google Scholar 

  84. Haeberlin B, Gengenbacher T, Meinzer A, Fricker G. Cyclodextrins—useful excipients for oral peptide administration? Int J Pharm. 1996;137(1):103–10.

    CAS  Google Scholar 

  85. Allémann E, Leroux J-C, Gurny R. Polymeric nano- and microparticles for the oral delivery of peptides and peptidomimetics. Adv Drug Deliv Rev. 1998;34(2–3):171–89.

    PubMed  Google Scholar 

  86. Christophersen PC, Zhang L, Yang M, Nielsen HM, Mullertz A. Solid lipid particles for oral delivery of peptide and protein drugs I—elucidating the release mechanism of lysozyme during lipolysis. Eur J Pharm Biopharm. 2013;85(3):473–80.

    CAS  PubMed  Google Scholar 

  87. Cilek A, Celebi N, Tırnaksız F. Lecithin-based microemulsion of a peptide for oral administration: preparation, characterization, and physical stability of the formulation. Drug Deliv. 2006;13(1):19–24.

    CAS  PubMed  Google Scholar 

  88. Kirby CJ. Oil-based formulations for oral delivery of therapeutic peptides. J Liposome Res. 2000;10(4):391–407.

    CAS  Google Scholar 

  89. Banerjee A, Onyuksel H. Peptide delivery using phospholipid micelles. Wiley Interdisc Rev Nanomed Nanobiotechnol. 2012;4(5):562–74.

    CAS  Google Scholar 

  90. Kumar TRS, Soppimath K, Nachaegari SK. Novel delivery technologies for protein and peptide therapeutics. Curr Pharm Biotechnol. 2006;7(4):261–76.

    CAS  PubMed  Google Scholar 

  91. Kavimandan NJ, Losi E, Wilson JJ, Brodbelt J. Synthesis and characterization of insulin–transferrin conjugates. Bioconjug Chem. 2006;17(6):1376–84.

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Xia CQ, Wang J, Shen W-C. Hypoglycemic effect of insulin–transferrin conjugate in streptozotocin-induced diabetic rats. J Pharm Exp Ther. 2000;295(2):594–600.

    CAS  Google Scholar 

  93. Youn YS, Chae SY, Lee S, Kwon MJ, Shin H. Improved peroral delivery of glucagon-like peptide-1 by site-specific biotin modification: design, preparation, and biological evaluation. Eur J Pharm Biopharm. 2008;68(3):667–75.

    CAS  PubMed  Google Scholar 

  94. Mizuma T, Koyanagi A, Awazu S. Intestinal transport and metabolism of glucose-conjugated kyotorphin and cyclic kyotorphin: metabolic degradation is crucial to intestinal absorption of peptide drugs. Biochim Biophys Acta. 2000;475(1):90–8.

    Google Scholar 

  95. des Rieux A, Fievez V, Momtaz M, Detrembleur C, Alonso-Sande M, Van Gelder J, et al. Helodermin-loaded nanoparticles: characterization and transport across an in vitro model of the follicle-associated epithelium. J Control Release. 2007;118(3):294–302.

    PubMed  Google Scholar 

  96. Kristensen M, Foged C, Berthelsen J, Nielsen HM. Peptide-enhanced oral delivery of therapeutic peptides and proteins. J Drug Del Sci Technol. 2013;23(4):365–73.

    CAS  Google Scholar 

  97. Maher S, Brayden DJ, Feighery L, McClean S. Cracking the junction: update on the progress of gastrointestinal absorption enhancement in the delivery of poorly absorbed drugs. Crit Rev Ther Drug Carrier Syst. 2008;25(2):117–68.

    CAS  PubMed  Google Scholar 

  98. Maher S, Brayden DJ. Overcoming poor permeability: translating permeation enhancers for oral peptide delivery. Drug Discov Today Technol. 2012;9(2):e113–9.

    CAS  Google Scholar 

  99. Harris D, Robinson JR. Bioadhesive polymers in peptide drug delivery. Biomaterials. 1990;11(9):652–8.

    CAS  PubMed  Google Scholar 

  100. Lehr CM, Bouwstra JA, Kok W, De Boer AG. Effects of the mucoadhesive polymer polycarbophil on the intestinal absorption of a peptide drug in the rat. J Pharm Pharmacol. 1992;44(5):402–7.

    CAS  PubMed  Google Scholar 

  101. Balamurugan M. Chitosan: a perfect polymer used in fabricating gene delivery and novel drug delivery system. Int J Pharm Pharm Sci. 2012;4(3):54–6.

    CAS  Google Scholar 

  102. Lalatsa A, Garrett NL, Ferrarelli T, Moger J, Schatzlein AG. Delivery of peptides to the blood and brain after oral uptake of quaternary ammonium palmitoyl glycol chitosan nanoparticles. Mol Pharm. 2012;9(6):1764–74.

    CAS  PubMed  Google Scholar 

  103. Lalatsa A, Lee V, Malkinson JP, Zloh M. A prodrug nanoparticle approach for the oral delivery of a hydrophilic peptide, leucine5-enkephalin, to the brain. Mol Pharm. 2012;9(6):1665–80.

    CAS  PubMed  Google Scholar 

  104. Bernkop-Schnuerch A, Pinter Y, Guggi D, Kahlbacher H. The use of thiolated polymers as carrier matrix in oral peptide delivery—proof of concept. J Control Release. 2005;106(1–2):26–33.

    CAS  Google Scholar 

  105. Mathias NR, Hussain MA. Non-invasive systemic drug delivery: developability considerations for alternate routes of administration. J Pharm Sci. 2010;99(1):1–20.

    CAS  PubMed  Google Scholar 

  106. Shah AR, Agarwal K, Baker ES, Singhal M. Machine learning based prediction for peptide drift times in ion mobility. Bioinformatics. 1991;26(13):1601–7.

    Google Scholar 

  107. Schuetz YB, Naik A, Guy RH, Kalia YN. Emerging strategies for the transdermal delivery of peptide and protein drugs. Expert Opin Drug Deliv. 2005;2(3):533–48.

    CAS  PubMed  Google Scholar 

  108. Singh N, Kalluri H, Herwadkar A, Badkar A, Banga AK. Transcending the skin barrier to delivery peptides and proteins using active technologies. Crit Rev Ther Drug Carrier Syst. 2012;29(4):265–98.

    CAS  PubMed  Google Scholar 

  109. Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26(11):1261–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  110. Wu F, Yang S, Yuan W, Jin T. Challenges and strategies in developing microneedle patches for transdermal delivery of protein and peptide therapeutics. Curr Pharm Biotechnol. 2012;13:1292–8.

    CAS  PubMed  Google Scholar 

  111. Grant M, Leone-Bay A. Peptide therapeutics: it’s all in the delivery. Ther Deliv. 2012;3(8):981–96.

    CAS  PubMed  Google Scholar 

  112. Pharma Z. Zosano Pharma enters into a license agreement with Novo Nordisk to deliver semaglutide using Zosano’s microneedle patch system. 2013 [cited; Available from: http://www.zosanopharma.com/index.php/20130514224/News/Press-Releases/Zosano-Pharma-Enters-into-a-License-Agreement-with-Novo-Nordisk-to-Deliver-Semaglutide-Using-Zosano.html.

  113. Kanikkannan N. Iontophoresis-based transdermal delivery systems. BioDrugs. 2002;16(5):339–47.

    CAS  PubMed  Google Scholar 

  114. Sen A, Daly ME, Hui SW. Transdermal insulin delivery using lipid enhanced electroporation. Biochim Biophys Acta - Biomembr. 2002;1564(1):5–8.

    CAS  Google Scholar 

  115. Boucaud A, Garrigue MA, Machet L, Vaillant L, Patat F. Effect of sonication parameters on transdermal delivery of insulin to hairless rats. J Control Release. 2002;81(1–2):113–9.

    CAS  PubMed  Google Scholar 

  116. Schramm J, Mitragotri S. Transdermal drug delivery by jet injectors: energetics of jet formation and penetration. Pharm Res. 2002;19(11):1673–9.

    CAS  PubMed  Google Scholar 

  117. Merkle HP, Wolany G. Buccal delivery for peptide drugs. J Control Release. 1992;21(1–3):155–64.

    CAS  Google Scholar 

  118. Veuillez F, Kalia YN, Jacques Y, Deshusses J, Buri P. Factors and strategies for improving buccal absorption of peptides. Eur J Pharm Biopharm. 2001;51(2):93–109.

    CAS  PubMed  Google Scholar 

  119. Soares S, Costa A, Sarmento B. Novel non-invasive methods of insulin delivery. Expert Opin Drug Deliv. 2012;9(12):1539–58.

    CAS  PubMed  Google Scholar 

  120. Niu C-H, Chiu Y-Y. FDA perspective on peptide formulation and stability issues. J Pharm Sci. 1998;87(11):1331–4.

    CAS  PubMed  Google Scholar 

  121. Uchenna Agu R, Ikechukwu Ugwoke M, Armand M, Kinget R, Verbeke N. The lung as a route for systemic delivery of therapeutic proteins and peptides. Respir Res. 2001;2(4):198–209.

    PubMed Central  Google Scholar 

  122. Kaspar A, Reichert J. Future directions for peptide therapeutics development. Drug Discov Today. 2013;18(17–18):807–17.

    CAS  PubMed  Google Scholar 

  123. Dombu CY, Betbeder D. Airway delivery of peptides and proteins using nanoparticles. Biomaterials. 2013;34(2):516–25.

    CAS  PubMed  Google Scholar 

  124. Qian F, Mathias N, Moench P, Chi C, Desikan S. Pulmonary delivery of a GLP-1 receptor agonist, BMS-686117. Int J Pharm. 2009;366(1–2):218–20.

    CAS  PubMed  Google Scholar 

  125. Hamilton HW, Steinbaugh BA, Stewart BH, Chan H, Schmid HL, Schroeder R, et al. Evaluation of physicochemical parameters important to the oral bioavailability of peptide-like compounds: implications for the synthesis of renin inhibitors. J Med Chem. 1995;38(9):1446–55.

    CAS  PubMed  Google Scholar 

  126. Nofsinger R, Borchardt R. Factors that restrict the cell permeation of cyclic prodrugs of an opioid peptide, part 4: characterization of the biopharmaceutical and physicochemical properties of two new cyclic prodrugs designed to be stable to oxidative metabolism by cytochrome P450 enzymes in the intestinal mucosa. J Pharm Sci. 2012;101(9):3500–10.

    CAS  PubMed  Google Scholar 

  127. Onoue S, Misaka S, Ohmori Y, Sato H, Mizumoto T, Hirose M, et al. Physicochemical and pharmacological characterization of novel vasoactive intestinal peptide derivatives with improved stability. Eur J Pharm Biopharm. 2009;73(1):95–101.

    CAS  PubMed  Google Scholar 

  128. Rotivala R, Bernarda M, Henrieta T, Fourgeauda M, Fabreguettesa JR, Surgeta E, et al. Comprehensive determination of the cyclic FEE peptide chemical stability in solution. J Pharm Biomed Anal. 2014;89:50–5.

    Google Scholar 

  129. Lai MC, Hageman MJ, Schowen RL, Borchardt RT, Laird BB, Topp EM. Chemical stability of peptides in polymers. 2. Discriminating between solvent and plasticizing effects of water on peptide deamidation in poly(vinylpyrrolidone). J Pharm Sci. 1999;88(10):1081–9.

    CAS  PubMed  Google Scholar 

  130. Guo L, Ma E, Zhao H, Long Y, Zheng C. Preliminary evaluation of a novel oral delivery system for rhPTH1-34: in vitro and in vivo. Int J Pharm. 2011;420(1):172–9.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Candice Alleyne, Erika Bartholomew, Elizabeth Sander, Lee Klein, Majid Mahjour, Suzanne D’Addio, and Caroline McGregor for useful discussions around peptide developability and/or useful comments on this article. We would also like to thank Michelle Sparks Kuo and Maria Cueto for their contributions to searching literature for the article. Lastly, the authors acknowledge Michele McColgan and Marilyn Terry for their assistance making publication-quality figures and tables.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annette Bak.

Additional information

Guest Editors: Annette Bak and Weiguo Dai

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bak, A., Leung, D., Barrett, S.E. et al. Physicochemical and Formulation Developability Assessment for Therapeutic Peptide Delivery—A Primer. AAPS J 17, 144–155 (2015). https://doi.org/10.1208/s12248-014-9688-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-014-9688-2

KEY WORDS

Navigation