Skip to main content

Advertisement

Log in

Immunogenicity of Antibody Drug Conjugates: Bioanalytical Methods and Monitoring Strategy for a Novel Therapeutic Modality

  • Meeting Report
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Immunogenicity (the development of an adaptive immune response reactive with a therapeutic) is a well-described but unwanted facet of biotherapeutic development. There are commonly applied procedures for immunogenicity risk assessment, testing strategies, and bioanalysis. With some modifications, these can be applied to new biotherapeutic modalities. For novel therapies such as antibody-drug conjugates (ADCs), the unique structural components may contribute additional complexities to both immunologic responses and bioanalytical methods. US product inserts (USPIs) for two commercially available ADCs detail the incidence of immunogenicity; however, the body of literature on immunogenicity of ADCs is limited. We recently participated in a conference session on this topic (Annual meeting of the American Association of Pharmaceutical Scientists, held November 2013 in San Antonio, TX, USA. The meeting featured the Symposium: Immunogenicity Assessment for Novel Antibody Drug Conjugates, Nonclinical to Clinical) which prompted an effort to share our perspectives on how immunogenicity risk assessment, testing strategies, and bioanalytical methods can be adapted to reflect the complexity of ADC therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. EMA. Guideline on immunogenicity assessment of biotechnology-derived therapeutic proteins. 2007.

  2. Shankar G, Arkin S, Cocea L, Devanarayan V, Kirshner S, Kromminga A, et al. Assessment and reporting of the clinical immunogenicity of therapeutic proteins and peptides-harmonized terminology and tactical recommendations. AAPS J. 2014;16:658–73.

    Article  CAS  PubMed  Google Scholar 

  3. EMA. Guideline on immunogenicity assessment of monoclonal antibodies intended for in vivo clinical use. 2012.

  4. FDA. Guidance for industry, assay development for immunogenicity testing of therapeutic proteins (draft). 2009.

  5. Shankar G, Devanarayan V, Amaravadi L, Barrett YC, Bowsher R, Finco-Kent D, et al. Recommendations for the validation of immunoassays used for detection of host antibodies against biotechnology products. J Pharm Biomed Anal. 2008;48(5):1267–81.

    Article  CAS  PubMed  Google Scholar 

  6. Alley SC, Zhang X, Okeley NM, Anderson M, Law CL, Senter PD, et al. The pharmacologic basis for antibody-auristatin conjugate activity. J Pharmacol Exp Ther. 2009;330(3):932–8.

    Article  CAS  PubMed  Google Scholar 

  7. Carter PJ, Senter PD. Antibody-drug conjugates for cancer therapy. Cancer J. 2008;14(3):154–69.

    Article  CAS  PubMed  Google Scholar 

  8. Erickson HK, Park PU, Widdison WC, Kovtun YV, Garrett LM, Hoffman K, et al. Antibody-maytansinoid conjugates are activated in targeted cancer cells by lysosomal degradation and linker-dependent intracellular processing. Cancer Res. 2006;66(8):4426–33.

    Article  CAS  PubMed  Google Scholar 

  9. Kovtun YV, Audette CA, Ye Y, Xie H, Ruberti MF, Phinney SJ, et al. Antibody-drug conjugates designed to eradicate tumors with homogeneous and heterogeneous expression of the target antigen. Cancer Res. 2006;66(6):3214–21.

    Article  CAS  PubMed  Google Scholar 

  10. Sievers EL, Senter PD. Antibody-drug conjugates in cancer therapy. Annu Rev Med. 2013;64:15–29.

    Article  CAS  PubMed  Google Scholar 

  11. Kovtun YV, Goldmacher VS. Cell killing by antibody-drug conjugates. Cancer Lett. 2007;255(2):232–40.

    Article  CAS  PubMed  Google Scholar 

  12. Smith L, Watson MB, O’Kane SL, Drew PJ, Lind MJ, Cawkwell L. The analysis of doxorubicin resistance in human breast cancer cells using antibody microarrays. Mol Cancer Ther. 2006;5(8):2115–20.

    Article  CAS  PubMed  Google Scholar 

  13. Sutherland MS, Sanderson RJ, Gordon KA, Andreyka J, Cerveny CG, Yu C, et al. Lysosomal trafficking and cysteine protease metabolism confer target-specific cytotoxicity by peptide-linked anti-CD30-auristatin conjugates. J Biol Chem. 2006;281(15):10540–7.

    Article  CAS  PubMed  Google Scholar 

  14. Pastan I, Hassan R, FitzGerald DJ, Kreitman RJ. Immunotoxin treatment of cancer. Annu Rev Med. 2007;58:221–37.

    Article  CAS  PubMed  Google Scholar 

  15. Mazor R, Vassall AN, Eberle JA, Beers R, Weldon JE, Venzon DJ, et al. Identification and elimination of an immunodominant T-cell epitope in recombinant immunotoxins based on Pseudomonas exotoxin A. Proc Natl Acad Sci U S A. 2012;109(51):E3597–603.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Eisen HN, editor. An introduction to molecular and cellular principles of the immune responses. Harper and Row; 1974.

  17. Clark T, Han X, King L, Barletta F. Insights into antibody-drug conjugates: bioanalysis and biomeasures in discovery. Bioanalysis. 2013;5(9):985–7.

    Article  CAS  PubMed  Google Scholar 

  18. Girish S, Gupta M, Wang B, Lu D, Krop IE, Vogel CL, et al. Clinical pharmacology of trastuzumab emtansine (T-DM1): an antibody-drug conjugate in development for the treatment of HER2-positive cancer. Cancer Chemother Pharmacol. 2012;69(5):1229–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Gorovits B, Alley SC, Bilic S, Booth B, Kaur S, Oldfield P, et al. Bioanalysis of antibody-drug conjugates: American Association of Pharmaceutical Scientists Antibody-Drug Conjugate Working Group position paper. Bioanalysis. 2013;5(9):997–1006.

    Article  CAS  PubMed  Google Scholar 

  20. Kaur S, Xu K, Saad OM, Dere RC, Carrasco-Triguero M. Bioanalytical assay strategies for the development of antibody-drug conjugate biotherapeutics. Bioanalysis. 2013;5(2):201–26.

    Article  CAS  PubMed  Google Scholar 

  21. Lin K, Tibbitts J. Pharmacokinetic considerations for antibody drug conjugates. Pharm Res. 2012;29(9):2354–66.

    Article  CAS  PubMed  Google Scholar 

  22. Shah DK, Barletta F, Betts A, Hansel S. Key bioanalytical measurements for antibody-drug conjugate development: PK/PD modelers’ perspective. Bioanalysis. 2013;5(9):989–92.

    Article  CAS  PubMed  Google Scholar 

  23. FDA. Guidance for industry, immunogenicity assessment for therapeutic protein products (Draft). 2013.

  24. Koren E, Smith HW, Shores E, Shankar G, Finco-Kent D, Rup B, et al. Recommendations on risk-based strategies for detection and characterization of antibodies against biotechnology products. J Immunol Methods. 2008;333(1–2):1–9.

    Article  CAS  PubMed  Google Scholar 

  25. Ragnhammar P, Friesen HJ, Frodin JE, Lefvert AK, Hassan M, Osterborg A, et al. Induction of anti-recombinant human granulocyte-macrophage colony-stimulating factor (Escherichia coli-derived) antibodies and clinical effects in nonimmunocompromised patients. Blood. 1994;84(12):4078–87.

    CAS  PubMed  Google Scholar 

  26. Lucisano Valim YM, Lachmann PJ. The effect of antibody isotype and antigenic epitope density on the complement-fixing activity of immune complexes: a systematic study using chimaeric anti-NIP antibodies with human Fc regions. Clin Exp Immunol. 1991;84(1):1–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Zhang W, Voice J, Lachmann PJ. A systematic study of neutrophil degranulation and respiratory burst in vitro by defined immune complexes. Clin Exp Immunol. 1995;101(3):507–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Wu BW, Gunn GR, Shankar G. Competitive ligand-binding assays for the detection of neutralizing antibodies. In: Tovey MG, editor. Detection and quantification of antibodies to biopharmaceuticals. West Sussex: Wiley; 2011. pp. 175-92

  29. Devanarayan V, Tovey MG. Cut points and performance characteristics for anti-drug antibody assays. In: Tovey MG, editor. Detection and quantification of antibodies to biopharmaceuticals. West Sussex: Wiley; 2011. pp. 289-308.

  30. Wakshull E, Coleman D. Confirmatory immunogenicity assays. In: Tovey MG, editor. Detection and quantification of antibodies to biopharmaceuticals. West Sussex: Wiley; 2011.

  31. Geist BJ, Egan AC, Yang TY, Dong Y, Shankar G. Characterization of critical reagents in ligand-binding assays: enabling robust bioanalytical methods and lifecycle management. Bioanalysis. 2013;5(2):227–44.

    Article  CAS  PubMed  Google Scholar 

  32. O’Hara DM, Theobald V, Egan AC, Usansky J, Krishna M, TerWee J, et al. Ligand binding assays in the 21st century laboratory: recommendations for characterization and supply of critical reagents. AAPS J. 2012;14(2):316–28.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Guo J, Kumar S, Prashad A, Starkey J, Singh SK. Assessment of physical stability of an antibody drug conjugate by higher order structure analysis: impact of thiol-maleimide chemistry. Pharm Res. 2014;31(7):1710–23.

    Article  CAS  PubMed  Google Scholar 

  34. Wakankar AA, Feeney MB, Rivera J, Chen Y, Kim M, Sharma VK, et al. Physicochemical stability of the antibody-drug conjugate trastuzumab-DM1: changes due to modification and conjugation processes. Bioconjug Chem. 2010;21(9):1588–95.

    Article  CAS  PubMed  Google Scholar 

  35. Wakankar A, Chen Y, Gokarn Y, Jacobson FS. Analytical methods for physicochemical characterization of antibody drug conjugates. MAbs. 2011;3(2):161–72.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Patton A, Mullenix MC, Swanson SJ, Koren E. An acid dissociation bridging ELISA for detection of antibodies directed against therapeutic proteins in the presence of antigen. J Immunol Methods. 2005;304(1–2):189–95.

    Article  CAS  PubMed  Google Scholar 

  37. Gorovits B, Wakshull E, Pillutla R, Xu Y, Manning MS, Goyal J. Recommendations for the characterization of immunogenicity response to multiple domain biotherapeutics. J Immun Method. 2014.

  38. Alley SC, Benjamin DR, Jeffrey SC, Okeley NM, Meyer DL, Sanderson RJ, et al. Contribution of linker stability to the activities of anticancer immunoconjugates. Bioconjug Chem. 2008;19(3):759–65.

    Article  CAS  PubMed  Google Scholar 

  39. Baldwin AD, Kiick KL. Tunable degradation of maleimide-thiol adducts in reducing environments. Bioconjug Chem. 2011;22(10):1946–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Hengel SM, Sanderson R, Valliere-Douglass J, Nicholas N, Leiske C, Alley SC. Measurement of in vivo drug load distribution of cysteine-linked antibody-drug conjugates using microscale liquid chromatography mass spectrometry. Anal Chem. 2014;86(7):3420–5.

    Article  CAS  PubMed  Google Scholar 

  41. Carrasco-Triguero M, Yi JH, Dere R, Qiu ZJ, Lei C, Li Y, et al. Immunogenicity assays for antibody-drug conjugates: case study with ado-trastuzumab emtansine. Bioanalysis. 2013;5(9):1007–23.

    Article  CAS  PubMed  Google Scholar 

  42. Galsky MD, Eisenberger M, Moore-Cooper S, Kelly WK, Slovin SF, DeLaCruz A, et al. Phase I trial of the prostate-specific membrane antigen-directed immunoconjugate MLN2704 in patients with progressive metastatic castration-resistant prostate cancer. J Clin Oncol. 2008;26(13):2147–54.

    Article  CAS  PubMed  Google Scholar 

  43. Hoofring SA, Lopez R, Hock MB, Kaliyaperumal A, Patel SK, Swanson SJ, et al. Immunogenicity testing strategy and bioanalytical assays for antibody-drug conjugates. Bioanalysis. 2013;5(9):1041–55.

    Article  CAS  PubMed  Google Scholar 

  44. Tolcher AW, Ochoa L, Hammond LA, Patnaik A, Edwards T, Takimoto C, et al. Cantuzumab mertansine, a maytansinoid immunoconjugate directed to the CanAg antigen: a phase I, pharmacokinetic, and biologic correlative study. J Clin Oncol. 2003;21(2):211–22.

    Article  CAS  PubMed  Google Scholar 

  45. ICH. International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use. Preclinical safety evaluation of biotechnology-derived pharmaceuticals S6(R1). 2011.

  46. Takeda. Brentuximab vedotin: summary of product characteristics, EMEA 2012. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002455/WC500135055.pdf.

  47. Wyeth-Ayerst. Gemtuzumab ozogamicin, summary for presentation to the FDA’s Oncologic Division Advisory Committee. 2000. http://www.fda.gov/ohrms/dockets/ac/00/backgrd/3592b2c.pdf.

  48. Arceci RJ, Sande J, Lange B, Shannon K, Franklin J, Hutchinson R, et al. Safety and efficacy of gemtuzumab ozogamicin in pediatric patients with advanced CD33+ acute myeloid leukemia. Blood. 2005;106(4):1183–8.

    Article  CAS  PubMed  Google Scholar 

  49. Landsteiner K. The specificity of serological reactions. Springfield: Thomas; 1936.

    Google Scholar 

  50. Gavin AL, Hoebe K, Duong B, Ota T, Martin C, Beutler B, et al. Adjuvant-enhanced antibody responses in the absence of toll-like receptor signaling. Science. 2006;314(5807):1936–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Palm NW, Medzhitov R. Immunostimulatory activity of haptenated proteins. Proc Natl Acad Sci U S A. 2009;106(12):4782–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Gauba V, Grunewald J, Gorney V, Deaton LM, Kang M, Bursulaya B, et al. Loss of CD4 T-cell-dependent tolerance to proteins with modified amino acids. Proc Natl Acad Sci U S A. 2011;108(31):12821–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. So T, Ito H, Hirata M, Ueda T, Imoto T. Contribution of conformational stability of hen lysozyme to induction of type 2 T-helper immune responses. Immunology. 2001;104(3):259–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Delamarre L, Couture R, Mellman I, Trombetta ES. Enhancing immunogenicity by limiting susceptibility to lysosomal proteolysis. J Exp Med. 2006;203(9):2049–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Kang HK, Chung YJ, Park CU, Jang YS, Kim BS. Induction of autoimmunity by immunization with hapten-modified hen egg lysozyme in hen egg lysozyme-transgenic mice. Immunology. 2006;117(3):368–78.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Antonelli G, Simeoni E, Bagnato F, Pozzilli C, Turriziani O, Tesoro R, et al. Further study on the specificity and incidence of neutralizing antibodies to interferon (IFN) in relapsing remitting multiple sclerosis patients treated with IFN beta-1a or IFN beta-1b. J Neurol Sci. 1999;168(2):131–6.

    Article  CAS  PubMed  Google Scholar 

  57. Khan OA, Dhib-Jalbut SS. Neutralizing antibodies to interferon beta-1a and interferon beta-1b in MS patients are cross-reactive. Neurology. 1998;51(6):1698–702.

    Article  CAS  PubMed  Google Scholar 

  58. Chung CH, Mirakhur B, Chan E, Le QT, Berlin J, Morse M, et al. Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. N Engl J Med. 2008;358(11):1109–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Graversen JH, Svendsen P, Dagnaes-Hansen F, Dal J, Anton G, Etzerodt A, et al. Targeting the hemoglobin scavenger receptor CD163 in macrophages highly increases the anti-inflammatory potency of dexamethasone. Molec Therap J Am Soc Gene Therap. 2012;20(8):1550–8.

    Article  CAS  Google Scholar 

  60. Yacoby I, Benhar I. Targeted anti bacterial therapy. Infect Dis Drug Targets. 2007;7(3):221–9.

    Article  CAS  Google Scholar 

  61. Rodon J, Garrison M, Hammond LA, de Bono J, Smith L, Forero L, et al. Cantuzumab mertansine in a three-times a week schedule: a phase I and pharmacokinetic study. Cancer Chemother Pharmacol. 2008;62(5):911–9.

    Article  CAS  PubMed  Google Scholar 

  62. Fayad L, Offner F, Smith MR, Verhoef G, Johnson P, Kaufman JL, et al. Safety and clinical activity of a combination therapy comprising two antibody-based targeting agents for the treatment of non-Hodgkin lymphoma: results of a phase I/II study evaluating the immunoconjugate inotuzumab ozogamicin with rituximab. J Clin Oncol. 2013;31(5):573–83.

    Article  CAS  PubMed  Google Scholar 

  63. Lapusan S, Vidriales MB, Thomas X, de Botton S, Vekhoff A, Tang R, et al. Phase I studies of AVE9633, an anti-CD33 antibody-maytansinoid conjugate, in adult patients with relapsed/refractory acute myeloid leukemia. Invest New Drugs. 2012;30(3):1121–31.

    Article  CAS  PubMed  Google Scholar 

  64. Younes A, Kim S, Romaguera J, Copeland A, Farial Sde C, Kwak LW, et al. Phase I multidose-escalation study of the anti-CD19 maytansinoid immunoconjugate SAR3419 administered by intravenous infusion every 3 weeks to patients with relapsed/refractory B-cell lymphoma. J Clin Oncol. 2012;30(22):2776–82.

  65. Annunziata CM, Kohn EC, LoRusso P, Houston ND, Coleman RL, Buzoianu M, et al. Phase 1, open-label study of MEDI-547 in patients with relapsed or refractory solid tumors. Invest New Drugs. 2013;31(1):77–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Starcevic Manning M, Hock MB. ADC immunogenicity evaluation. In: Novel methods in bioanalysis and characterization of antibody–drug conjugates. Gorovits B, Shord S (Eds). Future Science, London, UK. In Press (2014)

Download references

Acknowledgments

The authors acknowledge and thank the American Association of Pharmaceutical Scientists (AAPS) for supporting the short course and recognize the scientists dedicated to defining the ADC development path. The authors would like to specifically acknowledge Dr. Charles Foerder for serving as a presenter and panelist at the AAPS annual meeting.

Author’s Contribution

M.B.H. and K.T. prepared the manuscript for publication. M.B.H., K.T., M.C.T., and N.F.S. wrote and reviewed the manuscript. K.T. organized and moderated the AAPS session. M.B.H., M.C.T., and N.F.S. presented during the short course and served as panelists for the panel session.

Conflict of Interest

K.T. is employed by Novartis Pharmaceuticals and declares no competing financial interests. M.B.H. is employed at Amgen and declares no competing financial interests. M.C.T. is employed by Genentech and declares no competing financial interests. N.F.S. is the CEO of ProImmune and declares no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Benjamin Hock or Karen E. Thudium.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hock, M.B., Thudium, K.E., Carrasco-Triguero, M. et al. Immunogenicity of Antibody Drug Conjugates: Bioanalytical Methods and Monitoring Strategy for a Novel Therapeutic Modality. AAPS J 17, 35–43 (2015). https://doi.org/10.1208/s12248-014-9684-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-014-9684-6

KEY WORDS

Navigation