The AAPS Journal

, Volume 17, Issue 1, pp 83–92 | Cite as

Lipid-Based Drug Carriers for Prodrugs to Enhance Drug Delivery

Review Article Theme: Chemical, Pharmacologic, and Clinical Perspectives of Prodrugs
Part of the following topical collections:
  1. Theme: Chemical, Pharmacologic, and Clinical Perspectives of Prodrugs


The combination of lipid drug delivery systems with prodrugs offers several advantages including improved pharmacokinetics, increased absorption, and facilitated targeting. Lipidization and use of lipid carriers can increase the pharmacological half-life of the drug, thus improving pharmacokinetics and allowing less frequent dosing. Lipids also offer advantages such as increased absorption through the intestines for oral drug absorption and to the CNS for brain delivery. Furthermore, the use of lipid delivery systems can enhance drug targeting. Endogenous proteins bind lipids in the blood and carry them to the liver to enable targeting of this organ. Drugs with significant side effects in the stomach can be specifically delivered to enterocytes by exploiting lipases for prodrug activation. Finally, lipids can be used to target the lymphatic system, thus bypassing the liver and avoiding first-pass metabolism. Lymphatic targeting is also important for antiviral drugs in the protection of B and T lymphocytes. In this review, both lipid-drug conjugates and lipid-based carriers will be discussed. An overview, including the chemistry and assembly of the systems, as well as examples from the clinic and in development, will be provided.


drug delivery fatty acids glyceride phospholipid prodrug 


  1. 1.
    Smith DA, Brown K, Neale MG. Chromone-2-carboxylic acids: roles of acidity and lipophilicity in drug disposition. Drug Metab Rev. 1985;16(4):365–88.PubMedCrossRefGoogle Scholar
  2. 2.
    van der Vusse GJ. Albumin as fatty acid transporter. Drug Metab Pharmacokinet. 2009;24(4):300–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Hackett MJ, Zaro JL, Shen WC, Guley PC, Cho MJ. Fatty acids as therapeutic auxiliaries for oral and parenteral formulations. Adv Drug Deliv Rev. 2013;65(10):1331–9.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Wermuth CG GJ-C, Marchandeau C. Designing prodrugs and bioprecursors I: carrier prodrugs. In: CG W, editor. The practice of medicinal chemistry. London: Academic; 1996. p. 671–96.Google Scholar
  5. 5.
    Clayton JP, Cole M, Elson SW, Ferres H. BRL.8988 (talampicillin), a well-absorbed oral form of ampicillin. Antimicrob Agents Chemother. 1974;5(6):670–1.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Minto CF, Howe C, Wishart S, Conway AJ, Handelsman DJ. Pharmacokinetics and pharmacodynamics of nandrolone esters in oil vehicle: effects of ester, injection site and injection volume. J Pharmacol Exp Ther. 1997;281(1):93–102.PubMedGoogle Scholar
  7. 7.
    Christie WW, editor. Advances in lipid methodology. Dundee: Oily Press; 1993.Google Scholar
  8. 8.
    Taylor MD. Improved passive oral delivery via prodrugs. Adv Drug Deliv Rev. 1996;19(2):131–48.CrossRefGoogle Scholar
  9. 9.
    Yanez JA, Wang SW, Knemeyer IW, Wirth MA, Alton KB. Intestinal lymphatic transport for drug delivery. Adv Drug Deliv Rev. 2011;63(10–11):923–42.PubMedCrossRefGoogle Scholar
  10. 10.
    Charbon V, Latour I, Lambert DM, Buc-Calderon P, Neuvens L, De Keyser JL, et al. Targeting of drug to the hepatocytes by fatty acids. Influence of the carrier (albumin or galactosylated albumin) on the fate of the fatty acids and their analogs. Pharm Res. 1996;13(1):27–31.PubMedCrossRefGoogle Scholar
  11. 11.
    Sasson K, Marcus Y, Lev-Goldman V, Rubinraut S, Fridkin M, Shechter Y. Engineering prolonged-acting prodrugs employing an albumin-binding probe that undergoes slow hydrolysis at physiological conditions. J Control Release : Off J Control Release Society. 2010;142(2):214–20.CrossRefGoogle Scholar
  12. 12.
    Caliph SM, Charman WN, Porter CJ. Effect of short-, medium-, and long-chain fatty acid-based vehicles on the absolute oral bioavailability and intestinal lymphatic transport of halofantrine and assessment of mass balance in lymph-cannulated and non-cannulated rats. J Pharm Sci. 2000;89(8):1073–84.PubMedCrossRefGoogle Scholar
  13. 13.
    Paris GY, Garmaise DL, Cimon DG, Swett L, Carter GW, Young P. Glycerides as prodrugs. 2. 1,3-Dialkanoyl-2-(2-methyl-4-oxo-1,3-benzodioxan-2-yl)glycerides (cyclic aspirin triglycerides) as antiinflammatory agents. J Med Chem. 1980;23(1):79–82.PubMedCrossRefGoogle Scholar
  14. 14.
    Paris GY, Garmaise DL, Cimon DG, Swett L, Carter GW, Young P. Glycerides as prodrugs. 3. Synthesis and antiinflammatory activity of [1-(p-chlorobenzoyl)-5-methoxy-2-methylindole-3-acetyl]glycerides (indomethacin glycerides). J Med Chem. 1980;23(1):9–13.PubMedCrossRefGoogle Scholar
  15. 15.
    Cullen E. Novel anti-inflammatory agents. J Pharm Sci. 1984;73(5):579–89.PubMedCrossRefGoogle Scholar
  16. 16.
    Delie F, Couvreur P, Nisato D, Michel JB, Puisieux F, Letourneux Y. Synthesis and in vitro study of a diglyceride prodrug of a peptide. Pharm Res. 1994;11(8):1082–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Scriba GK, Lambert DM. Bioavailability of phenytoin and anticonvulsant activity after oral administration of phenytoin-bis-hydroxyisobutyrate to rats. Pharm Res. 1997;14(2):251–3.PubMedCrossRefGoogle Scholar
  18. 18.
    Garzonaburbeh A, Poupaert JH, Claesen M, Dumont P, Atassi G. 1,3-Dipalmitoylglycerol ester of chlorambucil as a lymphotropic, orally administrable anti-neoplastic agent. J Med Chem. 1983;26(8):1200–3.CrossRefGoogle Scholar
  19. 19.
    Garzonaburbeh A, Poupaert JH, Claesen M, Dumont P. A lymphotropic prodrug of L-dopa—synthesis, pharmacological properties, and pharmacokinetic behavior of 1,3-dihexadecanoyl-2-[(S)-2-amino-3-(3,4-dihydroxyphenyl)propanoyl]propane-1,2,3-triol. J Med Chem. 1986;29(5):687–91.CrossRefGoogle Scholar
  20. 20.
    Lambert DM. Rationale and applications of lipids as prodrug carriers. Eur J Pharm Sci : Off J Eur Fed Pharm Sci. 2000;11 Suppl 2:S15–27.CrossRefGoogle Scholar
  21. 21.
    Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med. 2002;53:615–27.PubMedCrossRefGoogle Scholar
  22. 22.
    Prodrugs: challenges and rewards. New York: Springer; 2007.Google Scholar
  23. 23.
    Ojima I, Slater JC, Michaud E, Kuduk SD, Bounaud PY, Vrignaud P, et al. Syntheses and structure-activity relationships of the second-generation antitumor taxoids: exceptional activity against drug-resistant cancer cells. J Med Chem. 1996;39(20):3889–96.PubMedCrossRefGoogle Scholar
  24. 24.
    Raub TJ. P-glycoprotein recognition of substrates and circumvention through rational drug design. Mol Pharm. 2006;3(1):3–25.PubMedCrossRefGoogle Scholar
  25. 25.
    Ruchelman AL, Houghton PJ, Zhou N, Liu A, Liu LF, LaVoie EJ. 5-(2-aminoethyl)dibenzo[c, h][1,6]naphthyridin-6-ones: variation of n-alkyl substituents modulates sensitivity to efflux transporters associated with multidrug resistance. J Med Chem. 2005;48(3):792–804.PubMedCrossRefGoogle Scholar
  26. 26.
    Wechter WJ, Johnson MA, Hall CM, Warner DT, Berger AE, Wenzel AH, et al. ara-Cytidine acrylates. Use of drug design predictors in structure-activity relationship correlation. J Med Chem. 1975;18(4):339–44.PubMedCrossRefGoogle Scholar
  27. 27.
    Neil GL, Wiley PF, Manak RC, Moxley TE. Antitumor effect of 1-beta-D-arabinofuranosylcytosine 5′-adamantoate (NSC 117614) in L1210 leukemic mice. Cancer Res. 1970;30(4):1047–54.PubMedGoogle Scholar
  28. 28.
    Wechter WJ, Gish DT, Greig ME, Gray GD, Moxley TE, Kuentzel SL, et al. Nucleic acids. 16. Orally active derivatives of ara-cytidine. J Med Chem. 1976;19(8):1013–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Bergman AM, Kuiper CM, Noordhuis P, Smid K, Voorn DA, Comijn EM, et al. Antiproliferative activity and mechanism of action of fatty acid derivatives of gemcitabine in leukemia and solid tumor cell lines and in human xenografts. Nucleosides Nucleotides Nucleic Acids. 2004;23(8–9):1329–33.PubMedCrossRefGoogle Scholar
  30. 30.
    Peters GJ, Voorn DA, Kuiper CM, van der Wilt CL, Noordhuis P, Smid K, et al. Cell specific cytotoxicity and structure-activity relationship of lipophilic 1-B-D-arabinofuranosylcytosine (ara-C) derivatives. Nucleosides Nucleotides. 1999;18(4–5):877–8. Epub 1999/08/05.PubMedCrossRefGoogle Scholar
  31. 31.
    Breistol K, Balzarini J, Sandvold ML, Myhren F, Martinsen M, De Clercq E, et al. Antitumor activity of P-4055 (elaidic acid-cytarabine) compared to cytarabine in metastatic and s.c. human tumor xenograft models. Cancer Res. 1999;59(12):2944–9.PubMedGoogle Scholar
  32. 32.
    Jordheim LP, Cros E, Gouy MH, Galmarini CM, Peyrottes S, Mackey J, et al. Characterization of a gemcitabine-resistant murine leukemic cell line: reversion of in vitro resistance by a mononucleotide prodrug. Clin Cancer Res : Off J Am Assoc Cancer Res. 2004;10(16):5614–21.CrossRefGoogle Scholar
  33. 33.
    Tobias SC, Borch RF. Synthesis and biological evaluation of a cytarabine phosphoramidate prodrug. Mol Pharm. 2004;1(2):112–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Raetz CR, Chu MY, Srivastava S, Turcotte JG. A phospholipid derivative of cytosine arabinoside and its conversion to phosphatidylinositol by animal tissue. Science. 1977;196(4287):303–5.PubMedCrossRefGoogle Scholar
  35. 35.
    Ludwig PS, Schwendener RA, Schott H. Synthesis and anticancer activities of amphiphilic 5-fluoro-2′-deoxyuridylic acid prodrugs. Eur J Med Chem. 2005;40(5):494–504.PubMedCrossRefGoogle Scholar
  36. 36.
    Peghini PA, Zahner R, Kuster H, Schott H, Schwendener RA. In vitro anti-human immunodeficiency virus and anti-hepatitis B virus activities and pharmacokinetic properties of heterodinucleoside phosphates containing AZT or ddC. Antivir Chem Chemother. 1998;9(2):117–26.PubMedCrossRefGoogle Scholar
  37. 37.
    Galmarini CM, Myhren F, Sandvold ML. CP-4055 and CP-4126 are active in ara-C and gemcitabine-resistant lymphoma cell lines. Br J Haematol. 2009;144(2):273–5.PubMedCrossRefGoogle Scholar
  38. 38.
    Immordino ML, Brusa P, Rocco F, Arpicco S, Ceruti M, Cattel L. Preparation, characterization, cytotoxicity and pharmacokinetics of liposomes containing lipophilic gemcitabine prodrugs. J Control Release : off J Controll Release Soc. 2004;100(3):331–46.CrossRefGoogle Scholar
  39. 39.
    Ali SM, Khan AR, Ahmad MU, Chen P, Sheikh S, Ahmad I. Synthesis and biological evaluation of gemcitabine-lipid conjugate (NEO6002). Bioorg Med Chem Lett. 2005;15(10):2571–4.PubMedCrossRefGoogle Scholar
  40. 40.
    Chen P, Chien PY, Khan AR, Sheikh S, Ali SM, Ahmad MU, et al. In-vitro and in-vivo anti-cancer activity of a novel gemcitabine-cardiolipin conjugate. Anti-Cancer Drugs. 2006;17(1):53–61.PubMedCrossRefGoogle Scholar
  41. 41.
    Adema AD, Radi M, Daft J, Narayanasamy J, Hoebe EK, Alexander LE, et al. Troxacitabine prodrugs for pancreatic cancer. Nucleosides Nucleotides Nucleic Acids. 2007;26(8–9):1073–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Senter PD, Pearce WE, Greenfield RS. Development of a drug-release strategy based on the reductive fragmentation of benzyl carbamate disulfides. J Org Chem. 1990;55(9):2975–8.CrossRefGoogle Scholar
  43. 43.
    Wang Y, Li L, Jiang W, Yang Z, Zhang Z. Synthesis and preliminary antitumor activity evaluation of a DHA and doxorubicin conjugate. Bioorg Med Chem Lett. 2006;16(11):2974–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Kuznetsova L, Chen J, Sun L, Wu XY, Pepe A, Veith JA, et al. Syntheses and evaluation of novel fatty acid-second-generation taxoid conjugates as promising anticancer agents. Bioorg Med Chem Lett. 2006;16(4):974–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Hostetler KY, Beadle JR, Hornbuckle WE, Bellezza CA, Tochkov IA, Cote PJ, et al. Antiviral activities of oral 1-O-hexadecylpropanediol-3-phosphoacyclovir and acyclovir in woodchucks with chronic woodchuck hepatitis virus infection. Antimicrob Agents Chemother. 2000;44(7):1964–9.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Suto T, Miyazawa J, Watanabe Y, Suto K, Yoshida Y, Sakata Y. The effect of YNK-01 (an oral prodrug of cytarabine) on hepatocellular carcinoma. Semin Oncol. 1997;24(6):S6-122–S6-9.Google Scholar
  47. 47.
    Tauber U, Schroder K, Dusterberg B, Matthes H. Absolute bioavailability of testosterone after oral administration of testosterone-undecanoate and testosterone. Eur J Drug Metab Pharmacokinet. 1986;11(2):145–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Horst HJ, Holtje WJ, Dennis M, Coert A, Geelen J, Voigt KD. Lymphatic absorption and metabolism of orally administered testosterone undecanoate in man. Klin Wochenschr. 1976;54(18):875–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Coert A, Geelen J, de Visser J, van der Vies J. The pharmacology and metabolism of testosterone undecanoate (TU), a new orally active androgen. Acta Endocrinol (Copenh). 1975;79(4):789–800.Google Scholar
  50. 50.
    Cense HA, van Eijck CH, Tilanus HW. New insights in the lymphatic spread of oesophageal cancer and its implications for the extent of surgical resection. Best Pract Res Clin Gastroenterol. 2006;20(5):893–906.PubMedCrossRefGoogle Scholar
  51. 51.
    Garzon-Aburbeh A, Poupaert JH, Claesen M, Dumont P, Atassi G. 1,3-dipalmitoylglycerol ester of chlorambucil as a lymphotropic, orally administrable antineoplastic agent. J Med Chem. 1983;26(8):1200–3.PubMedCrossRefGoogle Scholar
  52. 52.
    Pantaleo G, Graziosi C, Fauci AS. The role of lymphoid organs in the immunopathogenesis of HIV infection. AIDS. 1993;7 Suppl 1:S19–23.PubMedCrossRefGoogle Scholar
  53. 53.
    Pantaleo G, Graziosi C, Demarest JF, Cohen OJ, Vaccarezza M, Gantt K, et al. Role of lymphoid organs in the pathogenesis of human immunodeficiency virus (HIV) infection. Immunol Rev. 1994;140:105–30.PubMedCrossRefGoogle Scholar
  54. 54.
    Umeda M, Marusawa H, Seno H, Katsurada A, Nabeshima M, Egawa H, et al. Hepatitis B virus infection in lymphatic tissues in inactive hepatitis B carriers. J Hepatol. 2005;42(6):806–12.PubMedCrossRefGoogle Scholar
  55. 55.
    Shackleford DM, Faassen WA, Houwing N, Lass H, Edwards GA, Porter CJH, et al. Contribution of lymphatically transported testosterone undecanoate to the systemic exposure of testosterone after oral administration of two andriol formulations in conscious lymph duct-cannulated dogs. J Pharmacol Exp Ther. 2003;306(3):925–33.PubMedCrossRefGoogle Scholar
  56. 56.
    Allen TM, Hansen C. Pharmacokinetics of stealth versus conventional liposomes: effect of dose. Biochim Biophys Acta. 1991;1068(2):133–41.PubMedCrossRefGoogle Scholar
  57. 57.
    Newman MS, Colbern GT, Working PK, Engbers C, Amantea MA. Comparative pharmacokinetics, tissue distribution, and therapeutic effectiveness of cisplatin encapsulated in long-circulating, pegylated liposomes (SPI-077) in tumor-bearing mice. Cancer Chemother Pharmacol. 1999;43(1):1–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Liposome technology. Boca Raton: CRC Press; 1992Google Scholar
  59. 59.
    Korba BA, Xie H, Wright KN, Hornbuckle WE, Gerin JL, Tennant BC, et al. Liver-targeted antiviral nucleosides: enhanced antiviral activity of phosphatidyl-dideoxyguanosine versus dideoxyguanosine in woodchuck hepatitis virus infection in vivo. Hepatology. 1996;23(5):958–63.PubMedGoogle Scholar
  60. 60.
    Taneja D, Namdeo A, Mishra PR, Khopade AJ, Jain NK. High-entrapment liposomes for 6-mercaptopurine—a prodrug approach. Drug Dev Ind Pharm. 2000;26(12):1315–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Tokunaga Y, Iwasa T, Fujisaki J, Sawai S, Kagayama A. Liposomal sustained-release delivery systems for intravenous injection V. Biological disposition of liposome-entrapped lipophilic prodrug of 1-beta-D-arabinofuranosylcytosine. Chem Pharm Bull. 1988;36(10):4060–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Tokunaga Y, Iwasa T, Fujisaki J, Sawai S, Kagayama A. Liposomal sustained-release delivery systems for intravenous injection. IV. Antitumor activity of newly synthesized lipophilic 1-beta-D-arabinofuranosylcytosine prodrug-bearing liposomes. Chem Pharm Bull. 1988;36(9):3574–83.PubMedCrossRefGoogle Scholar
  63. 63.
    Bundgaard H, Falch E, Larsen C, Mikkelson TJ. Pilocarpine prodrugs. 1. Synthesis, physicochemical properties and kinetics of lactonization of pilocarpic acid-esters. J Pharm Sci. 1986;75(1):36–43.PubMedCrossRefGoogle Scholar
  64. 64.
    Burke TG, Mishra AK, Wani MC, Wall ME. Lipid bilayer partitioning and stability of camptothecin drugs. Biochemistry. 1993;32(20):5352–64.PubMedCrossRefGoogle Scholar
  65. 65.
    Bundgaard H. The double prodrug concept and its applications. Adv Drug Deliv Rev. 1989;3(1):39–65.CrossRefGoogle Scholar
  66. 66.
    Arouri A, Hansen AH, Rasmussen TE, Mouritsen OG. Lipases, liposomes and lipid-prodrugs. Curr Opin Colloid In. 2013;18(5):419–31.CrossRefGoogle Scholar
  67. 67.
    Park YS. Tumor-directed targeting of liposomes. Biosci Rep. 2002;22(2):267–81.PubMedCrossRefGoogle Scholar
  68. 68.
    Noble GT, Stefanick JF, Ashley JD, Kiziltepe T, Bilgicer B. Ligand-targeted liposome design: challenges and fundamental considerations. Trends Biotechnol. 2014;32(1):32–45.PubMedCrossRefGoogle Scholar
  69. 69.
    Shum P, Kim JM, Thompson DH. Phototriggering of liposomal drug delivery systems. Adv Drug Deliv Rev. 2001;53(3):273–84.PubMedCrossRefGoogle Scholar
  70. 70.
    Lee H, Messersmith P. Bio-inspired nanomaterials for a new generation of medicine. In: Vo-Dihn T, editor. Nanotechnology in biology and medicine: methods, devices, and applications. Boca Raton, Florida: CRC Press; 2007. p. 3–1–3–20.Google Scholar
  71. 71.
    Ganta S, Devalapally H, Shahiwala A, Amiji M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release. 2008;126(3):187–204. Epub 2008/02/12.PubMedCrossRefGoogle Scholar
  72. 72.
    Sabnis N, Lacko AG. Drug delivery via lipoprotein-based carriers: answering the challenges in systemic therapeutics. Ther Deliv. 2012;3(5):599–608.PubMedCrossRefGoogle Scholar
  73. 73.
    Firestone RA. Low-density lipoprotein as a vehicle for targeting antitumor compounds to cancer cells. Bioconjug Chem. 1994;5(2):105–13.PubMedCrossRefGoogle Scholar
  74. 74.
    Yen CF, Kalunta CI, Chen FS, Kaptein JS, Lin CK, Lad PM. Flow cytometric evaluation of LDL receptors using DiI-LDL uptake and its application to B and T lymphocytic cell lines. J Immunol Methods. 1994;177(1–2):55–67.PubMedCrossRefGoogle Scholar
  75. 75.
    Nikanjam M, Gibbs AR, Hunt CA, Budinger TF, Forte TM. Synthetic nano-LDL with paclitaxel oleate as a targeted drug delivery vehicle for glioblastoma multiforme. J Control Release : offi J Controll Release Soc. 2007;124(3):163–71.CrossRefGoogle Scholar
  76. 76.
    Koller-Lucae SK, Schott H, Schwendener RA. Low density lipoprotein and liposome mediated uptake and cytotoxic effect of N4-octadecyl-1-beta-D-arabinofuranosylcytosine in Daudi lymphoma cells. Br J Cancer. 1999;80(10):1542–9.PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Versluis AJ, Rensen PC, Rump ET, Van Berkel TJ, Bijsterbosch MK. Low-density lipoprotein receptor-mediated delivery of a lipophilic daunorubicin derivative to B16 tumours in mice using apolipoprotein E-enriched liposomes. Br J Cancer. 1998;78(12):1607–14.PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Bibby DC, Charman WN, Charman SA, Iskander MN, Porter CJH. Synthesis and evaluation of 5′ alkyl ester prodrugs of zidovudine for directed lymphatic delivery. Int J Pharm. 1996;144(1):61–70.CrossRefGoogle Scholar
  79. 79.
    Fernandez E, Borgstrom B. Intestinal-absorption of retinol and retinyl palmitate in the Rat—effects of tetrahydrolipstatin. Lipids. 1990;25(9):549–52.PubMedCrossRefGoogle Scholar
  80. 80.
    Noguchi T, Charman WNA, Stella VJ. The effect of drug lipophilicity and lipid vehicles on the lymphatic absorption of various testosterone esters. Int J Pharm. 1985;24(2–3):173–84.CrossRefGoogle Scholar
  81. 81.
    Deverre JR, Loiseau P, Puisieux F, Gayral P, Letourneux Y, Couvreur P, et al. Synthesis of the orally macrofilaricidal and stable glycerolipidic prodrug of melphalan, 1,3-dipalmitoyl-2-(4′(bis(2″-chloroethyl)amino)phenylalaninoyl)glycerol. Arzneimittelforschung. 1992;42–2(9):1153–6.Google Scholar
  82. 82.
    Loiseau PM, Deverre JR, Elkihel L, Gayral P, Letourneux Y. Study of lymphotropic targeting and macrofilaricidal activity of a melphalan prodrug on the Molinema-dessetae model. J Chemother. 1994;6(4):230–7.PubMedGoogle Scholar
  83. 83.
    Carter GW, Young PR, Swett LR, Paris GY. Pharmacological studies in the rat with [2-(1,3-didecanoyloxy)-propyl]2-acetyloxybenzoate (a-45474)—an aspirin pro-drug with negligible gastric irritation. Agents Actions. 1980;10(3):240–5.PubMedCrossRefGoogle Scholar
  84. 84.
    Sakai A, Mori N, Shuto S, Suzuki T. Deacylation reacylation cycle—a possible absorption mechanism for the novel lymphotropic antitumor agent dipalmitoylphosphatidylfluorouridine in rats. J Pharm Sci. 1993;82(6):575–8.PubMedCrossRefGoogle Scholar
  85. 85.
    Hara T, Liu F, Liu DX, Huang L. Emulsion formulations as a vector for gene delivery in vitro and in vivo. Adv Drug Deliv Rev. 1997;24(2–3):265–71.CrossRefGoogle Scholar
  86. 86.
    Hara T, Tan Y, Huang L. In vivo gene delivery to the liver using reconstituted chylomicron remnants as a novel nonviral vector. Proc Natl Acad Sci U S A. 1997;94(26):14547–52.PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Rensen PC, de Vrueh RL, van Berkel TJ. Targeting hepatitis B therapy to the liver. Clinical pharmacokinetic considerations. Clin Pharmacokinet. 1996;31(2):131–55.PubMedCrossRefGoogle Scholar
  88. 88.
    Shawer M, Greenspan P, OI S, Lu DR. VLDL-resembling phospholipid-submicron emulsion for cholesterol-based drug targeting. J Pharm Sci. 2002;91(6):1405–13.PubMedCrossRefGoogle Scholar
  89. 89.
    Kader A, Pater A. Loading anticancer drugs into HDL as well as LDL has little affect on properties of complexes and enhances cytotoxicity to human carcinoma cells. J Control Release : off J Controll Release Soc. 2002;80(1–3):29–44.CrossRefGoogle Scholar
  90. 90.
    Chu AC, Tsang SY, Lo EH, Fung KP. Low density lipoprotein as a targeted carrier for doxorubicin in nude mice bearing human hepatoma HepG2 cells. Life Sci. 2001;70(5):591–601.PubMedCrossRefGoogle Scholar
  91. 91.
    Tauchi Y, Takase M, Zushida I, Chono S, Sato J, Ito K, et al. Preparation of a complex of dexamethasone palmitate-low density lipoprotein and its effect on foam cell formation of murine peritoneal macrophages. J Pharm Sci. 1999;88(7):709–14.PubMedCrossRefGoogle Scholar
  92. 92.
    Li H, Zhang Z, Blessington D, Nelson DS, Zhou R, Lund-Katz S, et al. Carbocyanine labeled LDL for optical imaging of tumors. Acad Radiol. 2004;11(6):669–77.PubMedCrossRefGoogle Scholar
  93. 93.
    Kim JS, Kim BI, Maruyama A, Akaike T, Kim SW. A new non-viral DNA delivery vector: the terplex system. J Control Release. 1998;53(1–3):175–82.PubMedCrossRefGoogle Scholar
  94. 94.
    Kim JS, Maruyama A, Akaike T, Kim SW. In vitro gene expression on smooth muscle cells using a terplex delivery system. J Control Release. 1997;47(1):51–9.CrossRefGoogle Scholar
  95. 95.
    Lacko AG, Nair M, Paranjape S, Johnso S, McConathy WJ. High density lipoprotein complexes as delivery vehicles for anticancer drugs. Anticancer Res. 2002;22(4):2045–9.PubMedGoogle Scholar
  96. 96.
    Bijsterbosch MK, Schouten D, van Berkel TJ. Synthesis of the dioleoyl derivative of iododeoxyuridine and its incorporation into reconstituted high density lipoprotein particles. Biochemistry. 1994;33(47):14073–80.PubMedCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2014

Authors and Affiliations

  1. 1.Department of Pharmacology and Pharmaceutical Sciences, School of PharmacyUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations