The AAPS Journal

, Volume 16, Issue 5, pp 914–924 | Cite as

Next Generation Ligand Binding Assays—Review of Emerging Real-Time Measurement Technologies

  • Stephanie Fraser
  • Mark Cameron
  • Edward O’Connor
  • Martin Schwickart
  • Michael Tanen
  • Mark Ware
Review Article Theme: Emerging Technologies in the BioAnalytical Space Applied to Large Molecule Determinations
Part of the following topical collections:
  1. Theme: Emerging Technologies in the BioAnalytical Space Applied to Large Molecule Determinations


Over the last few years, numerous ligand binding assay technologies that utilize real-time measurement have been introduced; however, an assemblage and evaluation of these technologies has not previously been published. Herein, we describe six emerging real-time measurement technologies: Maverick™, MX96 SPR™, NanoDLSay™, AMMP®/ViBE®, SoPrano™, and two Lab-on-a-Chip (LoC) microfluidic devices. The development stage gate of these technologies ranges from pre-commercial to commercially available. Due to the novelty, the application and utility of some of the technologies regarding bioanalysis are likely to evolve but it is our hope that this review will provide insight into the direction the development of real-time measurement technologies is moving and the vision of those that are taking us there. Following the technology discussions, a comprehensive summary table is presented.


acoustic wave mass dampening dynamic light scattering integrated microfluidic systems localized surface plasmon resonance microring array 


  1. 1.
    Qavi AJ, Kindt JT, Gleeson MA, Bailey RC. Anti-DNA: RNA antibodies and silicon photonic microring resonators: increased sensitivity for multiplexed microRNA detection. Anal Chem. 2011;83(15):5949–56.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Washburn AL, Gunn LC, Bailey RC. Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators. Anal Chem. 2009;81(22):9499–506.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Luchansky MS, Bailey RC. Rapid, multiparameter profiling of cellular secretion using silicon photonic microring resonator arrays. J Am Chem Soc. 2011;133(50):20500–6.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Kindt JT, Bailey RC. Chaperone probes and bead-based enhancement to improve the direct detection of mRNA using silicon photonic sensor arrays. Anal Chem. 2012;84(18):8067–74.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Kirk JT, Brault ND, Baehr-Jones T, Hochberg M, Jiang S, Ratner DM. Zwitterionic polymer-modified silicon microring resonators for label-free biosensing in undiluted human plasma. Biosens Bioelectron. 2013;42:100–5.PubMedCrossRefGoogle Scholar
  6. 6.
    Abdiche YN, Miles A, Eckman J, Foletti D, Van Blarcom TJ, Yeung YA, et al. High-throughput epitope binning assays on label-free array-based biosensors can yield exquisite epitope discrimination that facilitates the selection of monoclonal antibodies with functional activity. PLoS One. 2014;9(3):e92451.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Schasfoort R, de Lau W, van der Kooi A, Clevers H, Engbers GH. Method for estimating the single molecular affinity. Anal Biochem. 2012;421(2):794–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Yang CY, Brooks E, Li Y, Denny P, Ho CM, Qi F, et al. Detection of picomolar levels of interleukin-8 in human saliva by SPR. Lab Chip. 2005;5(10):1017–23.PubMedCrossRefGoogle Scholar
  9. 9.
    Muller-Renaud S, Dupont D, Dulieu P. Development of a biosensor immunoassay for the quantification of alphas1-casein in milk. J Dairy Res. 2005;72(1):57–64.PubMedCrossRefGoogle Scholar
  10. 10.
    Wendler J, Vallejo LF, Rinas U, Bilitewski U. Application of an SPR-based receptor assay for the determination of biologically active recombinant bone morphogenetic protein-2. Anal Bioanal Chem. 2005;381(5):1056–64.PubMedCrossRefGoogle Scholar
  11. 11.
    Hutter E, Fendler JH. Exploitation of localized surface plasmon resonance. Adv Mater. 2004;16(19):1685–706.CrossRefGoogle Scholar
  12. 12.
    Willets KA, Van Duyne RP. Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem. 2007;58:267–97.PubMedCrossRefGoogle Scholar
  13. 13.
    Mayer KM, Lee S, Liao H, Rostro BC, Fuentes A, Scully PT, et al. A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods. ACS Nano. 2008;2(4):687–92.PubMedCrossRefGoogle Scholar
  14. 14.
    Tang L, Casas J, Venkataramasubramani M. Magnetic nanoparticle mediated enhancement of localized surface plasmon resonance for ultrasensitive bioanalytical assay in human blood plasma. Anal Chem. 2013;85(3):1431–9.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Huo Q, Colon J, Cordero A, Bogdanovic J, Baker CH, Goodison S, et al. A facile nanoparticle immunoassay for cancer biomarker discovery. J Nanobiotechnol. 2011;9:20.CrossRefGoogle Scholar
  16. 16.
    Bogdanovic J, Colon J, Baker C, Huo Q. A label-free nanoparticle aggregation assay for protein complex/aggregate detection and study. Anal Biochem. 2010;405(1):96–102.PubMedCrossRefGoogle Scholar
  17. 17.
    Jans H, Liu X, Austin L, Maes G, Huo Q. Dynamic light scattering as a powerful tool for gold nanoparticle bioconjugation and biomolecular binding studies. Anal Chem. 2009;81(22):9425–32.PubMedCrossRefGoogle Scholar
  18. 18.
    Wang X, Ramström O, Yan M. Dynamic light scattering as an efficient tool to study glyconanoparticle–lectin interactions. Analyst. 2011;136(20):4174–8.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Sánchez Pomales G, Morris TA, Falabella JB, Tarlov MJ, Zangmeister RA. A lectin based gold nanoparticle assay for probing glycosylation of glycoproteins. Biotechnol Bioeng. 2012;109(9):2240–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Miao XM, Xiong C, Wang WW, Ling LS, Shuai XT. Dynamic light scattering based sequence specific recognition of double stranded DNA with oligonucleotide functionalized gold nanoparticles. Chemistry A Eur J. 2011;17(40):11230–6.CrossRefGoogle Scholar
  21. 21.
    Cho H-H, Alderman E, Kreder N, Caro RG, Leong K, Miller MF, et al. Competitive, immunometric assay for fusion protein quantification: protein production prioritization. Anal Biochem. 2014;446:1–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Dickerson WM, Saab A, Leong K, Miller M, Latterich M, Beausang LA, et al. Measurement of downstream kinase activity modulation as indicator of epidermal growth factor receptor inhibitor efficacy. Anal Biochem. 2014;448:65–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Bow H, Pivkin IV, Diez-Silva M, Goldfless SJ, Dao M, Niles JC, et al. A microfabricated deformability-based flow cytometer with application to malaria. Lab Chip. 2011;11(6):1065–73.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Alshareef M, Metrakos N, Perez EJ, Azer F, Yang F, Yang X, et al. Separation of tumor cells with dielectrophoresis-based microfluidic chip. Biomicrofluidics. 2013;7(1):011803.PubMedCentralCrossRefGoogle Scholar
  25. 25.
    Chen Y, Li P, Huang P-H, Xie Y, Mai JD, Wang L, et al. Rare cell isolation and analysis in microfluidics. Lab Chip. 2014;14(4):626–45.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Wolff A, Perch-Nielsen IR, Larsen U, Friis P, Goranovic G, Poulsen CR, et al. Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter. Lab Chip. 2003;3(1):22–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Wang MM, Tu E, Raymond DE, Yang JM, Zhang H, Hagen N, et al. Microfluidic sorting of mammalian cells by optical force switching. Nat Biotechnol. 2004;23(1):83–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Sun Y, Lim C, Liu A, Ayi T, Yap P. Design, simulation and experiment of electroosmotic microfluidic chip for cell sorting. Sensors Actuators A Phys. 2007;133(2):340–8.CrossRefGoogle Scholar
  29. 29.
    Johansson L, Nikolajeff F, Johansson S, Thorslund S. On-chip fluorescence-activated cell sorting by an integrated miniaturized ultrasonic transducer. Anal Chem. 2009;81(13):5188–96.PubMedCrossRefGoogle Scholar
  30. 30.
    Ding X, Lin S-CS, Lapsley MI, Li S, Guo X, Chan CY, et al. Standing surface acoustic wave (SSAW) based multichannel cell sorting. Lab Chip. 2012;12(21):4228–31.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Shi J, Huang H, Stratton Z, Huang Y, Huang TJ. Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). Lab Chip. 2009;9(23):3354–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature. 2007;450(7173):1235–9.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Ignatiadis M, Reinholz M. Minimal residual disease and circulating tumor cells in breast cancer. Breast Cancer Res. 2011;13(5):222.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2014

Authors and Affiliations

  • Stephanie Fraser
    • 1
  • Mark Cameron
    • 2
  • Edward O’Connor
    • 3
  • Martin Schwickart
    • 4
  • Michael Tanen
    • 5
  • Mark Ware
    • 6
  1. 1.Pfizer Global Research and DevelopmentGrotonUSA
  2. 2.MPI ResearchMattawanUSA
  3. 3.Frontage Laboratories, Inc.ExtonUSA
  4. 4.MedImmune, Clinical Pharmacology and DMPKMountain ViewUSA
  5. 5.Molecular Biomarkers & DiagnosticsMerck & Co., Inc.Whitehouse StationUSA
  6. 6.Janssen Research & Development, LLC.Spring HouseUSA

Personalised recommendations