The AAPS Journal

, Volume 16, Issue 4, pp 791–801 | Cite as

Statistical Comparison of Dissolution Profiles to Predict the Bioequivalence of Extended Release Formulations

  • J. D. Gomez-Mantilla
  • U. F. Schaefer
  • V. G. Casabo
  • T. Lehr
  • C. M. Lehr
Research Article


Appropriate setting of dissolution specification of extended release (ER) formulations should include precise definition of a multidimensional space of complex definition and interpretation, including limits in dissolution parameters, lag time (t-lag), variability, and goodness of fit. This study aimed to set dissolution specifications of ER by developing drug-specific dissolution profile comparison tests (DPC tests) that are able to detect differences in release profiles between ER formulations that represent a lack of bioequivalence (BE). Dissolution profiles of test formulations were simulated using the Weibull and Hill models. Differential equations based in vivo–in vitro correlation (IVIVC) models were used to simulate plasma concentrations. BE trial simulations were employed to find the formulations likely to be declared bioequivalent and nonbioequivalent (BE space). Customization of DPC tests was made by adjusting the delta of a recently described tolerated difference test (TDT) or the limits of rejection of f2. Drug k a (especially if k a is small), formulation lag time (t-lag), the number of subjects included in the BE studies, and the number of sampled time points in the DPC test were the factors that affected the most these setups of dissolution specifications. Another recently described DPC test, permutation test (PT), showed excellent statistical power. All the formulations declared as similar with PT were also bioequivalent. Similar case-specific studies may support the biowaiving of ER drug formulations based on customized DPC tests.


bioequivalence dissolution profile comparisons f2 similarity factor in vitro similarity IVIVC 



JDGM thanks the Deutscher Akademischer Austausschdienst (DAAD) and Colciencias (Colombia) for the financial support.

Supplementary material

12248_2014_9615_MOESM1_ESM.docx (8.1 mb)
ESM 1 (DOCX 8296 kb)
12248_2014_9615_MOESM2_ESM.r (12 kb)
ESM 2 (R 11 kb)
12248_2014_9615_MOESM3_ESM.r (15 kb)
ESM 3 (R 14 kb)
12248_2014_9615_MOESM4_ESM.r (4 kb)
ESM 4 (R 3 kb)
12248_2014_9615_MOESM5_ESM.rdata (2 kb)
ESM 5 (RDATA 2 kb)


  1. 1.
    CDER. Guidance for industry, immediate release solid oral dosage forms, scale-up and postapproval changes. Rockville, MD 208551995.Google Scholar
  2. 2.
    FDA. Guidance for industry, SUPAC-MR: modified release solid oral dosage forms scale-up and postapproval changes: chemistry, manufacturing, and controls; in vitro dissolution testing and in vivo bioequivalence documentation. CMC 8. Rockville, MD 20857: Center for Drug Evaluation and Research (CDER); 1997.Google Scholar
  3. 3.
    EMEA. Guidance on pharmaceutical Develo. London, E14 4HB, UK; 2009.Google Scholar
  4. 4.
    FDA. Guidance for industry: bioavailability and bioequivalence studies for orally administered drug products—general considerations. In: FDA, editor. Rockville, MD; 2003.Google Scholar
  5. 5.
    Midha KK, McKay G. Bioequivalence; its history, practice, and future. AAPS J. 2009;11(4):664–70. doi: 10.1208/s12248-009-9142-z.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    EMEA. Guideline on the investigation of bioequivalence. London, E14 4HB, UK; 2010.Google Scholar
  7. 7.
    NIHS. Guideline for bioequivalence studies of generic products. In: Bureau PaFS, editor. Japan; 2012.Google Scholar
  8. 8.
    WHO. Multisource (generic) pharmaceutical products: guidelines on registration requirements to establish interchangeability. In: Fortieth report of the WHO Expert Committee on Specifications for Pharmaceutical Preparations, World Health Organization. WHO Technical Report Series, No. 937, Annex 7. Geneva; 2006.Google Scholar
  9. 9.
    Karalis V, Macheras P. Current regulatory approaches of bioequivalence testing. Expert Opin Drug Metab Toxicol. 2012;8(8):929–42. doi: 10.1517/17425255.2012.690394.PubMedCrossRefGoogle Scholar
  10. 10.
    FDA. Guidance for industry. SUPAC-IR, immediate release solid oral dosage forms. Scale-up and post-approval changes. 1995.Google Scholar
  11. 11.
    CDER/FDA. Guidance for industry. Dissolution testing of immediate release solid oral dosage forms. Rockville, MD; 1997.Google Scholar
  12. 12.
    CDER/FDA. Guidance for industry. SUPAC-MR: modified release solid oral dosage forms Scale-up and postapproval changes: chemistry, manufacturing, and controls; in vitro dissolution testing and in vivo bioequivalence documentation. CMC 8. Rockville, MD 20857: Center for Drug Evaluation and Research (CDER); 1997.Google Scholar
  13. 13.
    CDER/FDA. Guidance for industry. Extended release oral dosage forms: development, evaluation, and, application of in vitro/in vivo correlations. Rockville, MD 208571997.Google Scholar
  14. 14.
    CDER/FDA. Guidance for industry. Waiver of in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a biopharmaceutics classification system. Rockville, MD 208572000.Google Scholar
  15. 15.
    CDER/FDA. Guidance for industry. Bioavailability and bioequivalence studies for orally administered drug products -general considerations. In: FDA, editor. Rockville, MD; 2003.Google Scholar
  16. 16.
    Gupta E, Barends DM, Yamashita E, Lentz KA, Harmsze AM, Shah VP, et al. Review of global regulations concerning biowaivers for immediate release solid oral dosage forms. Eur J Pharm Sci Off J Eur Fed Pharm Sci. 2006;29(3–4):315–24. doi: 10.1016/j.ejps.2006.05.001.Google Scholar
  17. 17.
    Moore JW, Flanner HH. Mathematical comparison of dissolution profiles. Pharm Technol. 1996;20(6):64–74.Google Scholar
  18. 18.
    FDA. Guidance for industry, dissolution testing of immediate release solid oral dosage forms. Rockville, MD; 1997.Google Scholar
  19. 19.
    Korakianiti E, Rekkas D. Statistical thinking and knowledge management for quality-driven design and manufacturing in pharmaceuticals. Pharm Res. 2011;28(7):1465–79. doi: 10.1007/s11095-010-0315-3.PubMedCrossRefGoogle Scholar
  20. 20.
    Duan JZ, Riviere K, Marroum P. In vivo bioequivalence and in vitro similarity factor (f2) for dissolution profile comparisons of extended release formulations: how and when do they match? Pharm Res. 2011;28(5):1144–56. doi: 10.1007/s11095-011-0377-x.PubMedCrossRefGoogle Scholar
  21. 21.
    Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13(2):123–33.PubMedCrossRefGoogle Scholar
  22. 22.
    Dickinson PA, Lee WW, Stott PW, Townsend AI, Smart JP, Ghahramani P, et al. Clinical relevance of dissolution testing in quality by design. AAPS J. 2008;10(2):380–90. doi: 10.1208/s12248-008-9034-7.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Kocic I, Homsek I, Dacevic M, Parojcic J, Miljkovic B. An investigation into the influence of experimental conditions on in vitro drug release from immediate-release tablets of levothyroxine sodium and its relation to oral bioavailability. AAPS PharmSciTech. 2011;12(3):938–48. doi: 10.1208/s12249-011-9660-8.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Polli JE, Rekhi GS, Augsburger LL, Shah VP. Methods to compare dissolution profiles and a rationale for wide dissolution specifications for metoprolol tartrate tablets. J Pharm Sci. 1997;86(6):690–700. doi: 10.1021/js960473x.PubMedCrossRefGoogle Scholar
  25. 25.
    O'Hara T, Dunne A, Kinahan A, Cunningham S, Stark P, Devane J. Review of methodologies for the comparison of dissolution profile data. Adv Exp Med Biol. 1997;423:167–71.PubMedCrossRefGoogle Scholar
  26. 26.
    Gomez-Mantilla JD, Casabo VG, Schaefer UF, Lehr CM. Permutation test (PT) and tolerated difference test (TDT): two new, robust and powerful nonparametric tests for statistical comparison of dissolution profiles. Int J Pharm. 2013;441(1–2):458–67. doi: 10.1016/j.ijpharm.2012.11.008.PubMedCrossRefGoogle Scholar
  27. 27.
    Polli JE, Cook JA, Davit BM, Dickinson PA, Argenti D, Barbour N, et al. Summary workshop report: facilitating oral product development and reducing regulatory burden through novel approaches to assess bioavailability/bioequivalence. AAPS J. 2012;14(3):627–38. doi: 10.1208/s12248-012-9376-z.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Qiu Y. In vitro-in vivo correlations: fundamentals, development considerations, and applications. . In: Qiu Y. CHen Y ZG, editor. Developing solid oral dosage forms: pharmaceutical theory & practice. Academic; 2009. p. 379–408.Google Scholar
  29. 29.
    Dressman JB, Vertzoni M, Goumas K, Reppas C. Estimating drug solubility in the gastrointestinal tract. Adv Drug Deliv Rev. 2007;59(7):591–602. doi: 10.1016/j.addr.2007.05.009.PubMedCrossRefGoogle Scholar
  30. 30.
    Pluvinage B, Chitayat S, Ficko-Blean E, Abbott DW, Kunjachen JM, Grondin J, et al. Conformational analysis of StrH, the surface-attached exo-beta-d-N-acetylglucosaminidase from Streptococcus pneumoniae. J Mol Biol. 2013;425(2):334–49. doi: 10.1016/j.jmb.2012.11.005.PubMedCrossRefGoogle Scholar
  31. 31.
    Juenemann D, Bohets H, Ozdemir M, de Maesschalck R, Vanhoutte K, Peeters K, et al. Online monitoring of dissolution tests using dedicated potentiometric sensors in biorelevant media. Eur J Pharm Biopharm. 2011;78(1):158–65. doi: 10.1016/j.ejpb.2010.12.014.PubMedCrossRefGoogle Scholar
  32. 32.
    Garbacz G, Klein S. Dissolution testing of oral modified-release dosage forms. J Pharm Pharmacol. 2012;64(7):944–68. doi: 10.1111/j.2042-7158.2012.01477.x.PubMedCrossRefGoogle Scholar
  33. 33.
    Jantratid E, De Maio V, Ronda E, Mattavelli V, Vertzoni M, Dressman JB. Application of biorelevant dissolution tests to the prediction of in vivo performance of diclofenac sodium from an oral modified-release pellet dosage form. Eur J Pharm Sci Off J Eur Fed Pharm Sci. 2009;37(3–4):434–41. doi: 10.1016/j.ejps.2009.03.015.Google Scholar
  34. 34.
    Lobenberg R, Kramer J, Shah VP, Amidon GL, Dressman JB. Dissolution testing as a prognostic tool for oral drug absorption: dissolution behavior of glibenclamide. Pharm Res. 2000;17(4):439–44.PubMedCrossRefGoogle Scholar
  35. 35.
    Jantratid E, Janssen N, Reppas C, Dressman JB. Dissolution media simulating conditions in the proximal human gastrointestinal tract: an update. Pharm Res. 2008;25(7):1663–76. doi: 10.1007/s11095-008-9569-4.PubMedCrossRefGoogle Scholar
  36. 36.
    Karalis V, Magklara E, Shah VP, Macheras P. From drug delivery systems to drug release, dissolution, IVIVC, BCS, BDDCS, bioequivalence and biowaivers. Pharm Res. 2010;27(9):2018–29. doi: 10.1007/s11095-010-0220-9.PubMedCrossRefGoogle Scholar
  37. 37.
    Selen A, Cruanes MT, Mullertz A, Dickinson PA, Cook JA, Polli JE, et al. Meeting report: applied biopharmaceutics and quality by design for dissolution/release specification setting: product quality for patient benefit. AAPS J. 2010;12(3):465–72. doi: 10.1208/s12248-010-9206-0.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Jiang W, Kim S, Zhang X, Lionberger RA, Davit BM, Conner DP, et al. The role of predictive biopharmaceutical modeling and simulation in drug development and regulatory evaluation. Int J Pharm. 2011;418(2):151–60. doi: 10.1016/j.ijpharm.2011.07.024.PubMedCrossRefGoogle Scholar
  39. 39.
    Chilukuri DM, Sunkara G, Young D. Pharmaceutical product development : in vitro-in vivo correlation. New York: Informa Healthcare; 2007.Google Scholar
  40. 40.
    FDA. Guidance for industry extended release oral dosage forms: development, evaluation, and application of in vitro/in vivo correlations. Rockville, MD 208571997.Google Scholar
  41. 41.
    Fotaki N, Aivaliotis A, Butler J, Dressman J, Fischbach M, Hempenstall J, et al. A comparative study of different release apparatus in generating in vitro-in vivo correlations for extended release formulations. Eur J Pharm Biopharm. 2009;73(1):115–20. doi: 10.1016/j.ejpb.2009.04.012.PubMedCrossRefGoogle Scholar
  42. 42.
    Polli JE. In vitro studies are sometimes better than conventional human pharmacokinetic in vivo studies in assessing bioequivalence of immediate-release solid oral dosage forms. AAPS J. 2008;10(2):289–99. doi: 10.1208/s12248-008-9027-6.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Buchwald P. Direct, differential-equation-based in-vitro-in-vivo correlation (IVIVC) method. J Pharm Pharmacol. 2003;55(4):495–504. doi: 10.1211/002235702847.PubMedCrossRefGoogle Scholar
  44. 44.
    Eddington ND, Marroum P, Uppoor R, Hussain A, Augsburger L. Development and internal validation of an in vitro-in vivo correlation for a hydrophilic metoprolol tartrate extended release tablet formulation. Pharm Res. 1998;15(3):466–73.PubMedCrossRefGoogle Scholar
  45. 45.
    Gillespie WR. Convolution-based approaches for in vivo-in vitro correlation modeling. Adv Exp Med Biol. 1997;423:53–65.PubMedCrossRefGoogle Scholar
  46. 46.
    Balan G, Timmins P, Greene DS, Marathe PH. In vitro-in vivo correlation (IVIVC) models for metformin after administration of modified-release (MR) oral dosage forms to healthy human volunteers. J Pharm Sci. 2001;90(8):1176–85.PubMedCrossRefGoogle Scholar
  47. 47.
    Soto E, Haertter S, Koenen-Bergmann M, Staab A, Troconiz IF. Population in vitro-in vivo correlation model for pramipexole slow-release oral formulations. Pharm Res. 2010;27(2):340–9. doi: 10.1007/s11095-009-0027-8.PubMedCrossRefGoogle Scholar
  48. 48.
    Langenbucher F. Linearization of dissolution rate curves by the Weibull distribution. J Pharm Pharmacol. 1972;24(12):979–81.PubMedCrossRefGoogle Scholar
  49. 49.
    Papadopoulou V, Kosmidis K, Vlachou M, Macheras P. On the use of the Weibull function for the discernment of drug release mechanisms. Int J Pharm. 2006;309(1–2):44–50. doi: 10.1016/j.ijpharm.2005.10.044.PubMedCrossRefGoogle Scholar
  50. 50.
    Dokoumetzidis A, Papadopoulou V, Macheras P. Analysis of dissolution data using modified versions of Noyes-Whitney equation and the Weibull function. Pharm Res. 2006;23(2):256–61. doi: 10.1007/s11095-006-9093-3.PubMedGoogle Scholar
  51. 51.
    Dunne A. Approaches to developing in vitro–in vivo correlation models. In: Murthy CD SG, Young D, editors. Pharmaceutical product development: in vitro-in vivo correlation (drugs and the pharmaceutical sciences). New York: Informa Healthcare; 2007. p. 47–70.Google Scholar
  52. 52.
    Farrel CHS. IVIVC for oral drug delivery: immediate release and extended release dosage forms in pharmaceutical product development. In: Chilukuri DM SG, Young D, editors. Pharmaceutical product development: 165 (drugs and the pharmaceutical sciences). New York: Informa Healthcare; 2007. p. 125–40.Google Scholar
  53. 53.
    Proctor WR, Bourdet DL, Thakker DR. Mechanisms underlying saturable intestinal absorption of metformin. Drug Metab Dispos. 2008;36(8):1650–8. doi: 10.1124/dmd.107.020180.PubMedCrossRefGoogle Scholar
  54. 54.
    Drewe J, Guitard P. In vitro-in vivo correlation for modified-release formulations. J Pharm Sci. 1993;82(2):132–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Endrenyi L, Tothfalusi L. Metrics for the evaluation of bioequivalence of modified-release formulations. AAPS J. 2012;14(4):813–9. doi: 10.1208/s12248-012-9396-8.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    CDER/FDA. Guidance for industry. Q8(R2) Pharmaceutical development. 2009.Google Scholar
  57. 57.
    Lionberger RA, Lee SL, Lee L, Raw A, Yu LX. Quality by design: concepts for ANDAs. AAPS J. 2008;10(2):268–76. doi: 10.1208/s12248-008-9026-7.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    CDER/FDA. Guidance for industry. Q9 Quality Risk Management. Rockville, MD 208572006.Google Scholar
  59. 59.
    Garcia-Arieta A, Gordon J. Bioequivalence requirements in the European Union: critical discussion. AAPS J. 2012;14(4):738–48. doi: 10.1208/s12248-012-9382-1.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Karalis V, Macheras P, Van Peer A, Shah VP. Bioavailability and bioequivalence: focus on physiological factors and variability. Pharm Res. 2008;25(8):1956–62. doi: 10.1007/s11095-008-9645-9.PubMedCrossRefGoogle Scholar
  61. 61.
    Karalis V, Macheras P. An insight into the properties of a two-stage design in bioequivalence studies. Pharm Res. 2013;30(7):1824–35. doi: 10.1007/s11095-013-1026-3.PubMedCrossRefGoogle Scholar
  62. 62.
    Karalis V, Symillides M, Macheras P. Novel methods to assess bioequivalence. Expert Opin Drug Metab Toxicol. 2011;7(1):79–88. doi: 10.1517/17425255.2011.539202.PubMedCrossRefGoogle Scholar
  63. 63.
    Siepmann J, Siepmann F. Mathematical modeling of drug delivery. Int J Pharm. 2008;364(2):328–43. doi: 10.1016/j.ijpharm.2008.09.004.PubMedCrossRefGoogle Scholar
  64. 64.
    Siepmann J, Siepmann F. Mathematical modeling of drug dissolution. Int J Pharm. 2013;453(1):12–24. doi: 10.1016/j.ijpharm.2013.04.044.PubMedCrossRefGoogle Scholar
  65. 65.
    Polli JE, Abrahamsson BS, Yu LX, Amidon GL, Baldoni JM, Cook JA, et al. Summary workshop report: bioequivalence, biopharmaceutics classification system, and beyond. AAPS J. 2008;10(2):373–9. doi: 10.1208/s12248-008-9040-9.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2014

Authors and Affiliations

  • J. D. Gomez-Mantilla
    • 1
    • 2
  • U. F. Schaefer
    • 1
  • V. G. Casabo
    • 3
  • T. Lehr
    • 4
  • C. M. Lehr
    • 1
    • 5
    • 6
  1. 1.Biopharmaceutics and Pharmaceutical TechnologySaarland UniversitySaarbrueckenGermany
  2. 2.Department of PharmacyNational University of ColombiaBogotaColombia
  3. 3.Department of Technological PharmacyUniversity of ValenciaBurjassotSpain
  4. 4.Clinical PharmacySaarland UniversitySaarbrueckenGermany
  5. 5.Helmholtz-Institute for Pharmaceutical Research (HIPS)Helmholtz Center for Infection Research (HZI)SaarbrueckenGermany
  6. 6.Helmholtz Institute for Pharmaceutical Research SaarlandSaarland UniversitySaarbrueckenGermany

Personalised recommendations