Skip to main content

Advertisement

Log in

Curcumin Inhibits the AKT/NF-κB Signaling via CpG Demethylation of the Promoter and Restoration of NEP in the N2a Cell Line

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Curcumin (CUR), a non-toxic polyphenol from Curcuma longa, has been investigated as a potential therapy with anti-inflammatory and anti-oxidative effects for Alzheimer’s disease (AD), which depicts features of chronic inflammatory environment resulting in cellular death. However, it remains largely unknown whether the anti-inflammatory effect of CUR in AD is associated with its property of CpG demethylation, which is another function of CUR with the most research interest during recent years. Neprilysin (NEP, EP24.11), a zinc-dependent metallopeptidase expressed relatively low in the brain, is emerging as a potent inhibitor of AKT/Protein Kinase B. In addition, hypermethylated promoter of NEP has been reported to be associated with decreases in NEP expression. In the present study, using bisulfite-sequencing PCR (BSP) assay, we showed that the CpG sites in NEP gene were hypermethylated both in wild-type mouse neuroblastoma N2a cells (N2a/wt) and N2a cells stably expressing human Swedish mutant amyloid precursor protein (APP) (N2a/APPswe) associated with familial early onset AD. CUR treatment induced restoration of NEP gene via CpG demethylation. This CUR-mediated upregulation of NEP expression was also concomitant with the inhibition of AKT, subsequent suppression of nuclear transcription factor-κB (NF-κB) and its downstream pro-inflammatory targets including COX-2, iNOS in N2a/APPswe cells. This study represents the first evidence on a link between CpG demethylation effect on NEP and anti-inflammation ability of CUR that may provide a novel mechanistic insight into the anti-inflammatory actions of CUR as well as new basis for using CUR as a therapeutic intervention for AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abbott A. Dementia: a problem for our age. Nature. 2011;475:S2–4. doi:10.1038/475S2a.

    Article  CAS  PubMed  Google Scholar 

  2. Selkoe DJ. Inflammation and therapeutic vaccination in CNS diseases. Nature. 2002;420:879–84. doi:10.1038/nature01325.

    Article  PubMed  Google Scholar 

  3. Revesz T. Inflammation in Alzheimer’s disease: insights from immunotherapy. Brain. 2013;136:2654–6. doi:10.1093/brain/awt231.

    Article  PubMed  Google Scholar 

  4. Manning BD. AKT/PKB signaling: navigating downstream. Cell. 2007;129:1261–74. doi:10.1016/j.cell.2007.06.009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Delhase M, Li N, Karin M. Kinase regulation in inflammatory response. Nature. 2000;406:367–8. doi:10.1038/35019154.

    Article  CAS  PubMed  Google Scholar 

  6. Robertson M. Alzheimer’s disease and amyloid. Nature. 1992;356:103. doi:10.1038/356103a0.

    Article  CAS  PubMed  Google Scholar 

  7. Ferrer I, Martí E, López E, Tortosa A. NF-κB immunoreactivity is observed in association with beta A4 diffuse plaques in patients with Alzheimer’s disease. Neuropathol Appl Neurobiol. 1998;24:271–7. doi:10.1046/j.1365-2990.1998.00116.x.

    Article  CAS  PubMed  Google Scholar 

  8. Gonzalo MR, Martin B, Sanz-Anquela JM, Arevalo-Serrano J, Gonzalo-Ruiz A. Oligomers of beta-amyloid protein (Abeta1-42) induce the activation of cyclooxygenase-2 in astrocytes via an interaction with interleukin-1beta, tumour necrosis factor-alpha, and a nuclear factor kappa-B mechanism in the rat brain. Exp Neurol. 2012;236:215–27. doi:10.1016/j.expneurol.2012.05.004.

    Article  PubMed  Google Scholar 

  9. Hama E, Shirotani K, Iwata N, Saido TC. Effects of neprilysin chimeric proteins targeted to subcellular compartments on amyloid beta peptide clearance in primary neurons. J Biol Chem. 2004;279:30259–64. doi:10.1074/jbc.M401891200.

    Article  CAS  PubMed  Google Scholar 

  10. Marr RA, Guan H, Rockenstein E, Kindy M, Gage FH, Verma I, et al. Neprilysin regulates amyloid beta peptide levels. J Mol Neurosci. 2004;22:5–11. doi:10.1385/JMN:22:1-2:5.

    Article  PubMed  Google Scholar 

  11. Dai J, Mikhail M, Navarro D, Taneja SS, Lee P, Christos P, et al. Loss of neutral endopeptidase and activation of protein kinase B (Akt) is associated with prostate cancer progression. Cancer. 2006;107:2628–36. doi:10.1002/cncr.22312.

    Article  PubMed  Google Scholar 

  12. Ando H, Nagasaka T, Shibata D, Harata T, Shimomura Y, Goto M, et al. Neutral endopeptidase expressed by decidualized stromal cells suppresses akt phosphorylation and deoxyribonucleic acid synthesis induced by endothelin-1 in human endometrium. Endocrinology. 2006;147:5153–9. doi:10.1210/en.2006-0172.

    Article  PubMed  Google Scholar 

  13. Russo R, Borghi R, Markesbery W, Tabaton M, Piccini A. Neprylisin decreases uniformly in Alzheimer’s disease and in normal aging. FEBS Lett. 2005;579:6027–30. doi:10.1016/j.febslet.2005.09.054.

    Article  CAS  PubMed  Google Scholar 

  14. Martin C, Zhang Y. Mechanisms of epigenetic inheritance. Curr Opin Cell Biol. 2007;19:266–72. doi:10.1016/j.ceb.2007.04.002.

    Article  CAS  PubMed  Google Scholar 

  15. Chen KL, Wang SS, Yang YY, Yuan RY, Chen RM, Hu CJ. The epigenetic effects of amyloid-beta (1–40) on global DNA and neprilysin genes in murine cerebral endothelial cells. Biochem Biophys Res Commun. 2009;378:57–61. doi:10.1016/j.bbrc.2008.10.173.

    Article  CAS  PubMed  Google Scholar 

  16. Takahashi M, Yoshida M, Igarashi M, Nakae D. Methylation of neutral endopeptidase 24.11 promoter in rat hepatocellular carcinoma. Cancer Sci. 2006;97:611–7.

    Article  PubMed  Google Scholar 

  17. Aggarwal BB, Sung B. Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets. Trends Pharmacol Sci. 2009;30:85–94. doi:10.1016/j.tips.2008.11.002.

    Article  CAS  PubMed  Google Scholar 

  18. Shehzad A, Rehman G, Lee YS. Curcumin in inflammatory diseases. Biofactors. 2013;39:69–77. doi:10.1002/biof.1066.

    Article  CAS  PubMed  Google Scholar 

  19. Thangapazham RL, Sharma A, Maheshwari RK. Multiplemolecular targets in cancer chemoprevention by curcumin. AAPS J. 2006;8:E443–9. doi:10.1208/aapsj080352.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Nagaraju GP, Aliya S, Zafar SF, Basha R, Diaz R, El-Rayes BF. The impact of curcumin on breast cancer. Integr Biol (Camb). 2012;4:996–1007. doi:10.1039/c2ib20088k.

    Article  CAS  Google Scholar 

  21. Hatcher H, Planalp R, Cho J, Torti FM, Torti SV. Curcumin: from ancient medicine to current clinical trials. Cell Mol Life Sci. 2008;65:1631–52. doi:10.1007/s00018-008-7452-4.

    Article  CAS  PubMed  Google Scholar 

  22. Dhillon N, Aggarwal BB, Newman RA, Wolff RA, Kunnumakkara AB, Abbruzzese JL, et al. Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res. 2008;14:4491–9. doi:10.1158/1078-0432.

    Article  CAS  PubMed  Google Scholar 

  23. Fu S, Kurzrock R. Development of curcumin as an epigenetic agent. Cancer. 2010;116:4670–6. doi:10.1002/cncr.25414.

    Article  CAS  PubMed  Google Scholar 

  24. Liu Z, Xie Z, Jones W, Pavlovicz RE, Liu S, Yu J, et al. Curcumin is a potent DNA hypomethylation agent. Bioorg Med Chem Lett. 2009;19:706–9. doi:10.1016/j.bmcl.2008.12.041.

    Article  PubMed  Google Scholar 

  25. Nagaraju GP, Zhu S, Wen J, Farris AB, Adsay VN, Diaz R, et al. Novel synthetic curcumin analogues EF31 and UBS109 are potent DNA hypomethylating agents in pancreatic cancer. Cancer Lett. 2013;341:195–203. doi:10.1016/j.canlet.2013.08.002.

    Article  CAS  PubMed  Google Scholar 

  26. Nagaraju GP, Zhu S, Ko JE, Shoji M, El-Rayes B. Anti-angiogenic effects of curcumin and its novel analogs EF-31 and UBS-109 in colorectal cancer. FASEB J. 2013;27(Meeting Abstract Supplement):lb574.

    Google Scholar 

  27. Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M, et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature. 1995;375:754–60. doi:10.1038/375754a0.

    Article  CAS  PubMed  Google Scholar 

  28. Kim HS, Lim JY, Sul D, Hwang BY, Won TJ, Hwang KW, et al. Neuroprotective effects of the new diterpene, CBNU06 against beta-amyloid-induced toxicity through the inhibition of NF-kappaB signaling pathway in PC12 cells. Eur J Pharmacol. 2009;622:25–31. doi:10.1016/j.ejphar.2009.09.007.

    Article  CAS  PubMed  Google Scholar 

  29. Lyko F, Brown R. DNA methyltransferase inhibitors and the development of epigenetic cancer therapies. J Natl Cancer Inst. 2005;97:1498–506. doi:10.1093/jnci/dji311.

    Article  CAS  PubMed  Google Scholar 

  30. Wang ZF, Li HL, Li XC, Zhang Q, Tian Q, Wang Q, et al. Effects of endogenous β-amyloid overproduction on tau phosphorylation in cell culture. J Neurochem. 2006;98:1167–75. doi:10.1111/j.1471-4159.2006.03956.x.

    Article  CAS  PubMed  Google Scholar 

  31. Ding GJ, Fischer PA, Boltz RC, Schmidt JA, Colaianne JJ, Gough A, et al. Characterization and quantitation of NF-kappaB nuclear translocation induced by interleukin-1 and tumor necrosis factor-alpha. Development and use of a high capacity fluorescence cytometric system. J Biol Chem. 1998;273:28897–905. doi:10.1074/jbc.273.44.28897.

    Article  CAS  PubMed  Google Scholar 

  32. Adwan L, Zawia NH. Epigenetics: a novel therapeutic approach for the treatment of Alzheimer’s disease. Pharmacol Ther. 2013;139:41–50. doi:10.1016/j.pharmthera.2013.03.010.

    Article  CAS  PubMed  Google Scholar 

  33. Miners JS, Van Helmond Z, Chalmers K, Wilcock G, Love S, Kehoe PG. Decreased expression and activity of neprilysin in Alzheimer disease are associated with cerebral amyloid angiopathy. J Neuropathol Exp Neurol. 2006;65:1012–21. doi:10.1097/01.jnen.0000240463.87886.9a.

    Article  CAS  PubMed  Google Scholar 

  34. Lentzen H, Monden I, Linke J, Palenker J. No evidence for enkephalinase A on neuronal cells. Life Sci. 1983;33:105–8. doi:10.1016/0024-3205(83)90455-1.

    Article  CAS  PubMed  Google Scholar 

  35. Hong Y, Beckett C, Belyaev ND, Turner AJ. The impact of amyloid precursor protein signalling and histone deacetylase inhibition on neprilysin expression in human prostate cells. Int J Cancer. 2012;130:775–86. doi:10.1002/ijc.26028.

    Article  CAS  PubMed  Google Scholar 

  36. Belyaev ND, Nalivaeva NN, Makova NZ, Turner AJ. Neprilysin gene expression requires binding of the amyloid precursor protein intracellular domain to its promoter: implications for Alzheimer disease. EMBO Rep. 2009;10:94–100. doi:10.1038/embor.2008.222.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Wright J. Epigenetics: reversible tags. Nature. 2013;498:S10–1. doi:10.1038/498S10a.

    Article  CAS  PubMed  Google Scholar 

  38. Link A, Balaguer F, Shen Y, Lozano JJ, Leung HC, Boland CR, et al. Curcumin modulates DNA methylation in colorectal cancer cells. PLoS ONE. 2013;8:e57709. doi:10.1371/journal.pone.0057709.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Khor TO, Huang Y, Wu TY, Shu L, Lee J, Kong AN. Pharmacodynamics of curcumin as DNA hypomethylation agent in restoring the expression of Nrf2 via promoter CpGs emethylation. Biochem Pharmacol. 2011;82:1073–8. doi:10.1016/j.bcp.2011.07.065.

    Article  CAS  PubMed  Google Scholar 

  40. Shu L, Khor TO, Lee JH, Boyanapalli SS, Huang Y, Wu TY, et al. Epigenetic CpG demethylation of the promoter and reactivation of the expression of Neurog1 by curcumin in prostate LNCaP cells. AAPS J. 2011;13:606–14. doi:10.1208/s12248-011-9300-y.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Liu YL, Yang HP, Gong L, Tang CL, Wang HJ. Hypomethylation effects of curcumin, demethoxycurcumin and bisdemethoxycurcumin on WIF-1 promoter in non-small cell lung cancer cell lines. Mol Med Rep. 2011;4:675–9. doi:10.3892/mmr.2011.473.

    Article  CAS  PubMed  Google Scholar 

  42. Yu J, Peng Y, Wu LC, Xie Z, Deng Y, Hughes T, et al. Curcumin down-regulates DNA methyltransferase 1 and plays an anti-leukemic role in acute myeloid leukemia. PLoS ONE. 2013;8:e55934. doi:10.1371/journal.pone.0055934.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science. 1992;256:184–5. doi:10.1126/science.1566067.

    Article  CAS  PubMed  Google Scholar 

  44. Shakibaei M, John T, Schulze TG, Lehmann I, Mobasheri A. Suppression of NF-κB activation by curcumin leads to inhibition of expression of cyclo-oxygenase-2 and matrix metalloproteinase-9 in human articular chondrocytes: implications for the treatment of osteoarthritis. Biochem Pharmacol. 2007;73:1434–45. doi:10.1016/j.bcp.2007.01.005.

    Article  CAS  PubMed  Google Scholar 

  45. Moriyuki K, Sekiguchi F, Matsubara K, Nishikawa H, Kawabata A. Curcumin inhibits the proteinase-activated receptor-2-triggered prostaglandin E2 production by suppressing cyclooxygenase-2 upregulation and Akt-dependent activation of nuclear factor-κ B in human lung epithelial cells. J Pharmacol Sci. 2010;114:225–9. doi:10.1254/jphs.10126SC.

    Article  CAS  PubMed  Google Scholar 

  46. Mosca M, Lucciarini R, Perfumi MC, Santoni G. Thiorphan-induced survival and proliferation of rat thymocytes by activation of Akt/survivin pathway and inhibition of caspase-3 activity. J Pharmacol Exp Ther. 2008;327:215–25. doi:10.1124/jpet.108.138719.

    Article  PubMed  Google Scholar 

  47. Li W, Wu Y, Min F, Li Z, Huang J, Huang R. A nonhuman primate model of Alzheimer’s disease generated by intracranial injection of amyloid-beta42 and thiorphan. Metab Brain Dis. 2010;25:277–84. doi:10.1007/s11011-010-9207-9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Huaxi Xu (Burnham Institute for Medical Research, La Jolla, USA) for generously providing N2a/wt and N2a/APPswe cell lines and Dr. Zhiqian Dong (Case Western Reserve University, Cleveland, USA) for meticulously going through the manuscript. This work was supported by the National Science Foundation of Chongqing Science and Technology Commission (CSTC, 2012JJA10044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Y., Lu, X., Wang, L. et al. Curcumin Inhibits the AKT/NF-κB Signaling via CpG Demethylation of the Promoter and Restoration of NEP in the N2a Cell Line. AAPS J 16, 649–657 (2014). https://doi.org/10.1208/s12248-014-9605-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-014-9605-8

KEY WORDS

Navigation